Plasticité membranaire et fonctions cellulaires
L'activité de l'équipe concernait à l’origine la question de l'interaction de la lumière avec différentes classes de chromophores d'intérêt biologique et / ou biomédical. Certains de ces chromophores présentent un rendement quantique élevé à l’état triplet qui permet la production d'espèces réactives de l'oxygène (ROS). De tels agents sont appelés des photosensibilisateurs. Nous avons déjà montré qu'il est devenu possible d'utiliser ces molécules pour perturber des membranes modèles de manière fine et contrôlée. Notre objectif principal aujourd'hui est d'atteindre des niveaux plus élevés de complexité membranaire, d'explorer davantage les mécanismes impliqués, mais aussi de renforcer la pertinence de ces questions du point de vue biologique. Notre but n'est pas seulement de changer la composition des membranes modèles sur lesquelles nous travaillons, mais surtout de mieux comprendre la relation entre la composition de la membrane, sa morphologie et une activité biologique spécifique. Dans cette optique, des modèles de membranes biomimétiques tels que le protéo-liposome sont utilisés.
Nous sommes particulièrement intéressés par les membranes mitochondriales. Dans les cellules eucaryotes, les mitochondries sont des organites clés pour la production d'énergie et l'apoptose qui fusionnent et se divisent constamment. Deux membranes constituent leur enveloppe, avec différents niveaux de perméabilité. Une caractéristique des membranes mitochondriales internes (IMM) est la présence d'invaginations dynamiques appelées «crêtes». Ces nanostructures (10-30 nm), riches en un phospholipide mitochondrial spécifique, la cardiolipine (CL), peuvent changer de forme et de densité en fonction de la demande énergétique. Leur intégrité relative est généralement considérée comme un indicateur pertinent de l'état fonctionnel des mitochondries, car les crêtes contiennent les complexes OXPHOS responsables de la production d'ATP et séquestrent le cytochrome C dont la libération est impliquée dans la signalisation apoptotique. Des altérations spécifiques de la morphologie des crêtes provoquent des dysfonctionnements des mitochondries (dans le syndrome de Barth par exemple), et dans de nombreuses situations pathologiques, de telles altérations sont également observées. Notre objectif est donc de comprendre le rôle, la dynamique et l'impact des crêtes sur la fonction mitochondriale.
Doctorants (soutenance 2018->)
- Aurelien Bour (2014-2018)
-
Ana-Maria Daza Zapata (2023-2026) : i-Bio co-tutelle
Post-docs
- Susmita Sridhar (2019)
Stagiaires Master
Master 1:
- Helena Ramsvik (2020)
Master 2:
- Théo Levrault (2018)
- Banda Gassama (2018)
- Sylvain Domitin (2022)
- Juliette Michaud (2023)
Pages reliées
High-speed nanoscopy to decipher the real-time mitochondrial dynamics - Dyn@mitOffres d'emploi associées
2024
Publications
2024
⊞ | Identification of extracellular vesicles from their Raman spectra via self-supervised learning - Scientific Reports (Mar. 2024) |
⊞ | Lipidomics and biodistribution of extracellular vesicles-secreted by hepatocytes from Zucker lean and fatty rats - Journal of Extracellular Biology (Feb. 2024) |
⊞ | Extracellular vesicles from activated platelets possess a phospholipid-rich biomolecular profile and enhance prothrombinase activity - Journal of Thrombosis and Haemostasis (Jan. 2024) |
|
|
Bibtex | doi:10.1016/j.jtha.2024.01.004 |
2023
⊞ | Dynamics of mitochondrial under oxidative stress with high spatiotemporal resolution - Front. Cell Dev. Biol. (Nov. 2023) |
|
|
Bibtex | doi:https://doi.org/10.3389/fcell.2023.1307502 |
2021
⊞ | Isolation and Phospholipid Enrichment of Muscle Mitochondria and Mitoplasts - Bio Protoc (Oct. 2021) |
|
|
Bibtex | doi:https://doi.org/10.21769/bioprotoc.4201 |
⊞ | Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles - Nature Protocols (Jul. 2021) |
⊞ | Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems - Membranes (Jun. 2021) |
⊞ | Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle - Science Advances (Jan. 2021) |
|
|
Bibtex | doi:https://doi.org/10.1126/sciadv.abd6322 |
2020
⊞ | Mitochondrial cristae modeled as an out-of-equilibrium membrane driven by a proton field - Phys. Rev. E (Aug. 2020) |
|
|
Bibtex | doi:10.1103/PhysRevE.102.022401 |
2019
⊞ | Lipid unsaturation properties govern the sensitivity of membranes to photo-induced oxidative stress - Biophysical Journal (Mar. 2019) |
⊞ | Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles - Nanoscale (Jan. 2019) |
URL | Full text PDF | Bibtex | doi:10.1039/c8nr04677h |
2018
⊞ | Assessment of the ability of poly(l-lysine)-poly(ethylene glycol) (PLL-PEG) hydrogels to support the growth of U87-MG and F98 glioma tumor cells - J. Appl. Polym. Sci. (Jun. 2018) |
URL | Full text PDF | Bibtex | doi:10.1002/app.46287 |
⊞ | Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory - J. Phys. Chem. B (May. 2018) |
URL | Full text PDF | Bibtex | doi:10.1021/acs.jpcb.8b00658 |
URL | Full text PDF | Bibtex | doi:10.1021/acs.jpcb.8b00659 |
2017
⊞ | Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F1F0-ATP synthase - Proceedings of the National Academy of Sciences of the United States of America (Oct. 2017) |
URL | Full text PDF | Bibtex | doi:10.1073/pnas.1701207114 |
⊞ | Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states - Physical Chemistry Chemical Physics (Aug. 2017) |
URL | Full text PDF | Bibtex | doi:10.1039/c7cp02634j |
⊞ | Photo-induced oxidation of bio-mimetic membranes : Giant pore openings and membrane defects - Eur. Biophys. J. Biophys. Lett. (Jul. 2017) |
⊞ | Raman scattering-based multiconformational analysis for probing the structural differences between acetylcholine and acetylthiocholine. - Journal of Pharmaceutical and Biomedical Analysis (Mar. 2017) |
2016
⊞ | From bulk to plasmonic nanoparticle surfaces: the behavior of two potent therapeutic peptides, octreotide and pasireotide - Physical Chemistry Chemical Physics (Sep. 2016) |
⊞ | Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins - Int. J. Pharm. (Aug. 2016) |
⊞ | Correlation between Mitochondrial Morphology and Functionality after Oxidative Stress - Biophys. J. (Feb. 2016) |
⊞ | All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations - Journal of Raman Spectroscopy (Feb. 2016) |
2015
⊞ | Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles - Int. J. Pharm. (Nov. 2015) |
⊞ | Protonation-deprotonation and structural dynamics of antidiabetic drug metformin - Journal of Pharmaceutical and Biomedical Analysis (Oct. 2015) |
⊞ | Intracellular Monitoring of AS1411 Aptamer by Time-Resolved Microspectrofluorimetry and Fluorescence Imaging - J. Fluoresc. (Sep. 2015) |
⊞ | Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting - Nanomedicine: NBM (Apr. 2015) |
2014
⊞ | Effect of PKC alpha expression on Bcl-2 phosphorylation and cell death by hypericin - Apoptosis (Dec. 2014) |
⊞ | Low Concentration Structural Dynamics of Lanreotide and Somatostatin-14 - Biopolymers (Oct. 2014) |
⊞ | Disulfide linkage Raman markers: a reconsideration attempt - Journal of Raman Spectroscopy (Aug. 2014) |
⊞ | Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage - BMC Biophysics (Mar. 2014) |
URL | Full text PDF | Bibtex | doi:10.1186/2046-1682-7-2 |
2013
⊞ | Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity - PLOS One (Dec. 2013) |
⊞ | Protonation-deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis - Chemical Physics (Nov. 2013) |
⊞ | Characteristic Raman lines of phenylalanine analyzed by a multiconformational approach - Journal of Raman Spectroscopy (Jun. 2013) |
⊞ | Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy - ACS Nano (Jun. 2013) |
2012
⊞ | Flavin Conjugates for Delivery of Peptide Nucleic Acids - ChemBioChem (Nov. 2012) |
⊞ | Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy - Journal of Extracellular Vesicles (Nov. 2012) |
URL | Full text PDF | Bibtex | doi:10.3402/jev.v1i0.19179 |
⊞ | Octreotide Used for Probing the Type-II` beta-Turn CD and Raman Markers - Journal of Physical Chemistry B (Aug. 2012) |
⊞ | Absorption Band III Kinetics Probe the Picosecond Heme Iron Motion Triggered by Nitric Oxide Binding to Hemoglobin and Myoglobin - Journal of Physical Chemistry B (Apr. 2012) |
URL | Full text PDF | Bibtex | doi:10.1021/jp300849y |
2011
⊞ | Photo-dynamic induction of oxidative stress within cholesterol-containing membranes: Shape transitions and permeabilization - Biochem. Biophys. Acta - Biomembranes (Dec. 2011) |
⊞ | Hypericin incorporation and localization in fixed HeLa cells for various conditions of fixation and incubation - Photochem. Photobiol. Sciences (Nov. 2011) |
2010
⊞ | Interaction dynamics of hypericin with low-density lipoproteins and U87-MG cells - International Journal of Pharmaceutics (Apr. 2010) |
⊞ | Photosensitization of polymer vesicles: a multistep chemical process deciphered by micropipette manipulation - Soft Matter (Jan. 2010) |
2009
⊞ | Asymmetric Oxidation of Giant Vesicles Triggers Curvature-Associated Shape Transition and Permeabilization - Biophys. J. (Dec. 2009) |
⊞ | Influence of surface energy distribution on neuritogenesis - Colloids Surf B Biointerfaces (Sep. 2009) |
⊞ | Photosensitizing properties of chlorins in solution and in membrane-mimicking systems - Photochem Photobiol Sci. (Jan. 2009) |
2008
⊞ | Membrane Deformation under Local pH Gradient: Mimicking Mitochondrial Cristae Dynamics - Biophys. J. (Nov. 2008) |
⊞ | Tetrapyrrole photosensitisers, determinants of subcellular localisation and mechanisms of photodynamic processes in therapeutic approaches - Expert Opinion on Therapeutic Patents (Sep. 2008) |
2007
⊞ | Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins - Biochim Biophys Acta (Nov. 2007) |
⊞ | Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells - Eur Biophys J. (Nov. 2007) |
⊞ | Tetrapyrrole-photosensitizers vectorization and plasma LDL: A physico-chemical approach - International Journal of Pharmaceutics (Nov. 2007) |
⊞ | The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: A physico-chemical approach - Biochim Biophys Acta (Feb. 2007) |