Mechanics of integrated and artificial biological systems

The MEBS theme revolves around 4 complementary axes, all centered on the mechanics of integrated and artificial biological systems.

On the one hand, we study mechanical transduction processes from the macroscopic scale to the molecular and cellular scales, combining biomimetic approaches with a simple biological system.

  • At the macroscopic scale, we study the human tactile perception of complex fluids (emulsions, suspensions) by the tongue-palate system. On this subject, we are collaborating with the Nestlé Group and its Research Center based in Lausanne, Switzerland, and have developed a device that reproduces the functioning of the oral cavity. In particular, we seek to better understand how the surface structure of the tongue, in the form of papillae, participates in the mechanical filtering of tactile information before any coding by the central nervous system.
  • At molecular and cellular scales, we seek to better understand how the subcutaneous mechanoreceptors (present in humans under the surface of the skin of the fingers, but also in the tongue ...) and which determines in particular their response properties frequency. To this end, we develop model mechanoreceptors consisting of a lipid membrane (of the Droplet Interface Bilayers type) decorated with mechanosensitive ion channels, or assemblies of model cells connected together by these same channels, stimulated under controlled mechanical excitation conditions. For this purpose, we use TX-TL type in-vitro expression techniques for mechanosensitive proteins.
  • We also explore mechanotransduction processes in a mechanosensitive eukaryotic microorganism, paramecium, by developing behavioral experiments (optical tracking of trajectories) coupled with measurements of ionic flux across the membrane, by calcium imaging and electrophysiology. It is more particularly to understand how the behavioral response of the paramecium depends on the geometrical and mechanical properties of obstacles that it encounters.
  • We are also studying recently a new subject dedicated to the mechanics of biomimetic tissue models. The aim is to study the elastoplastic response of emulsions subjected to controlled mechanical disturbances, in order to better understand the physical bases underlying the collective remodeling of biological tissues, especially during morphogenesis. These emulsions, which are the analog of biological tissues, are formed of oil droplets in an aqueous medium, whose surface can be functionalized to mimic cell-cell adhesion.

PhD students (defense 2018 →)

  • 2027 : O. Vasiljevic
  • 2025 : C. Vincent
  • 2024 : Q. Guigue
  • 2023 : Pierre Tapie 
  • 2023 : Nicolas Escoubet 
  • 2021 : Iaroslava Golovkova 
  • 2019 : Jean-Baptiste Thomazo
  • 2019 : Manon Valet

 

Post-docs (since 2018)

  • 2018-2022: Lorraine Montel
  • 2022-2024: Sapna Ravindran
  • 2023-2025: Dario Dell'Arciprete

Master students (since 2018)

Master 1:

  • 2023: Mélio Melliet
  • 2022 : Widad Mesbahi
  • 2022 : Aurélien Henriques
  • 2022: Antoine Anastassiades 
  • 2021 : Cyprien Noble
  • 2020: Mathis Martin
  • 2020: Arthur Dervillez

 

Master 2:

  • 2023: Mohamed Diouf
  • 2022: Héloïse Uhl
  • 2022: Alexandre Pantel
  • 2021 : Hamdy El Hosary
  • 2020: Pierre Tapie
  • 2019: Nicolas Escoubet
  • 2019: Fanny Delille
  • 2018: Gaëlle El Asmar
  • 2018: Prashant Sinha
  • 2018 : Oleksandra Sorokina
 

 


Publications

2023

Interaction of the mechanosensitive microswimmer Paramecium with obstacles - Royal Society Open Science (May. 2023)
N. Escoubet , R. Brette , L.L. Pontani , A.M. Prevost
  URL Full text PDF Bibtex doi:10.1098/rsos.221645
A simple method to make, trap and deform a vesicle in a gel - Scientific Reports (Apr. 2023)
P. Tapie , L. Montel , A. Prevost , L.L. Pontani , E. Wandersman
  URL Full text PDF Bibtex doi:https://doi.org/10.1038/s41598-023-31996-9
An electrophysiological and kinematic model of Paramecium, the “swimming neuron” - PLOS Computational Biology (Feb. 2023)
I. Elices , A. Kulkarni , N. Escoubet , L.L. Pontani , A.M. Prevost , R. Brette
  URL Full text PDF Bibtex doi:10.1371/journal.pcbi.1010899

2022

2021

Toucher digital humain et mécano-transduction - L'Archicube (May. 2021)
A.M. Prevost , J. Scheibert
  URL Full text PDF Bibtex doi:

2020

Collective stiffening of soft hair assemblies - Physical Review E Rapid Communication (Jul. 2020)
J.B. Thomazo , E. Lauga , B. Le Révérend , E. Wandersman , A. Prevost
  URL Full text PDF Bibtex doi:10.1103/PhysRevE.102.010602
A simple device to immobilize protists for electrophysiology and microinjection - Journal of Experimental Biology (Jun. 2020)
A. Kulkarni , I. Elices , N. Escoubet , L.L. Pontani , A.M. Prevost , R. Brette
  URL Full text PDF Bibtex doi:10.1242/jeb.219253

2019

Probing in-mouth texture perception with a biomimetic tongue - Journal of Royal Society Interface (Oct. 2019)
J.B. Thomazo , J.C. Pastenes , C.J. Pipe , B. Le Révérend , E. Wandersman , A. Prevost
  URL Full text PDF Bibtex doi:10.1098/rsif.2019.0362
Diffusion through Nanopores in Connected Lipid Bilayer Networks - Phys. Rev. Lett. (Aug. 2019)
M. Valet , L.L. Pontani , R. Voituriez , E. Wandersman , A. Prevost
  URL Full text PDF Bibtex doi:10.1103/PhysRevLett.123.088101

2018

Quasistatic Microdroplet Production in a Capillary Trap - Phys. Rev. Applied (Feb. 2018)
M. Valet , L.L. Pontani , A. Prevost , E. Wandersman
  URL Full text PDF Bibtex doi:https://doi.org/10.1103/PhysRevApplied.9.014002

2016

Whisker contact detection of rodents based on slow and fast mechanical inputs - Frontiers in Behavioral Neuroscience (Dec. 2016)
N. Claverie , Y. Boubenec , G. Debrégeas , A. Prevost , E. Wandersman
  URL Full text PDF Bibtex doi:doi: 10.3389/fnbeh.2016.00251

2015

Normal contact and friction of rubber with model randomly rough surfaces - Soft Matter (Feb. 2015)
S. Yashima , V. Romero , E. Wandersman , C. Frétigny , M.K. Chaudhury , A. Chateauminois , A.M. Prevost
  URL Full text PDF Bibtex doi:10.1039/c4sm02346c

2011

Texture-Induced Modulations of Friction Force: The Fingerprint Effect - Physical Review Letters (Oct. 2011)
E. Wandersman , R. Candelier , G. Debregeas , A. Prevost
  URL Full text PDF Bibtex doi:10.1103/PhysRevLett.107.164301