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and friction of rubber with model
randomly rough surfaces

S. Yashima,†ad V. Romero,†bc E. Wandersman,bc C. Frétigny,a M. K. Chaudhury,e

A. Chateauminoisa and A. M. Prevost*bc

We report on normal contact and frictionmeasurements of model multicontact interfaces formed between

smooth surfaces and substrates textured with a statistical distribution of spherical micro-asperities.

Contacts are either formed between a rigid textured lens and a smooth rubber, or a flat textured rubber

and a smooth rigid lens. Measurements of the real area of contact A versus normal load P are performed

by imaging the light transmitted at the microcontacts. For both interfaces, A(P) is found to be sub-linear

with a power law behavior. Comparison with two multi-asperity contact models, which extend the

Greenwood–Williamson (J. Greenwood and J. Williamson, Proc. Royal Soc. London Ser. A, 295, 300

(1966)) model by taking into account the elastic interaction between asperities at different length scales,

is performed, and allows their validation for the first time. We find that long range elastic interactions

arising from the curvature of the nominal surfaces are the main source of the non-linearity of A(P). At a

shorter range, and except for very low pressures, the pressure dependence of both density and area of

microcontacts remains well described by Greenwood–Williamson's model, which neglects any

interaction between asperities. In addition, in steady sliding, friction measurements reveal that the mean

shear stress at the scale of the asperities is systematically larger than that found for a macroscopic

contact between a smooth lens and a rubber. This suggests that frictional stresses measured at

macroscopic length scales may not be simply transposed to microscopic multicontact interfaces.
Introduction

Surface roughness has long been recognized as a key issue in
understanding solid friction between macroscopic bodies. As
pointed out by the pioneering work of Bowden and Tabor,1 fric-
tion between rough surfaces involves shearing of myriads of
micro-asperity contacts of characteristic length scales distributed
over orders of magnitude. The statistical averaging of the
contributions of individual micro-asperity contacts to friction
remains an open issue which largely relies on the contact
mechanics description of multicontact interfaces. In previous
multi-asperity contact models such as the seminal Greenwood–
Williamson's (GW) model,2 randomly rough surfaces are oen
assimilated to a height distribution of non-interacting spherical
asperities, which obey locally Hertzian contact behavior. Along
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these guidelines, some previous models also attempted to
describe the fractal nature of surface roughness by considering
hierarchical distributions of asperities.3More rened exact elastic
contact mechanics theories were also developed byWestergaard,4

Johnson5 and Manners,6,7 amongst others, in order to solve the
problem of elastic contacts between one dimensional periodic
wavy surfaces. Most of the subsequent generalisations of elastic
contact theories to randomly rough surfaces are more or less
based on a spectral description of surface topography.8–11 Within
the framework of linear (visco)elasticity or elasto-plastic behavior,
these theories allow estimation of the pressure dependence of the
distribution of the microcontact size and pressure at various
length scales. From an experimental perspective, elucidation and
validation of these models using microscopic randomly rough
surfaces such as abraded or bead blasted surfaces are compro-
mised by the difficulties in the measurement of the actual
distribution of microcontact areas at the micrometer scale.
Although previous attempts were made by Dieterich and Kilgore12

with roughened surfaces of transparent materials using contact
imaging techniques, direct comparison of the experimental data
with contact mechanics models lacks clarity.

In this study, we take advantage of recent advances in sol–gel
and micro-milling techniques to engineer two types of model
randomly rough and transparent surfaces with topographical
characteristics compatible with GW's model of rough surfaces.2
Soft Matter, 2015, 11, 871–881 | 871
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Fig. 1 (a) SEM image topography of a RA sol–gel replica (f ¼ 0.41). (b)
Same with a SA PDMS replica of a micro-milled mold (f ¼ 0.4). (c)
Microcontact spatial distribution with the RA of (a) and a flat PDMS slab
(P ¼ 22 mN). (d) Same with the SA of (b) and a lens of radius of
curvature 128.8 mm (P ¼ 20 mN). Fig. (c) and (d) are image differences
with a reference non-contact image. Note the size difference in the
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They both consist of statistical distributions of spherical asper-
ities whose sizes (�20 mm up to 200 mm) allow for an optical
measurement of the spatial distributions of the microcontact
areas. In their spirit, these experiments are along the line of
Archard's previous investigation,3 which used model perspex
surfaces consisting of millimeter sized spherical asperities of
equal height. However, in Archard's investigation, a small
number of asperities were used. Furthermore, technical limita-
tions in the estimation of variation of heights of asperities did
not allow for a statistical analysis of the load dependence of the
distributions of microcontact areas. Here, using a sphere-on-
plane contact geometry with different statistical distributions of
micro-asperities, we probe the elastic interactions between
asperities (see e.g. (ref. 13�16)) by directly comparing the
measured distributions of the real area of contact with the
predictions of two different multi-asperity contact models. We
show how the use of textured surfaces allows an accurate vali-
dation of these models that permits investigation of the statis-
tical distribution of contact pressure, number of microcontacts
andmicrocontact radii distributions. In the last part of the paper,
we present the results of a preliminary study that illustrates how
such model systems can be used to investigate the relationship
between frictional properties and real contact areas.
apparent contact related to the difference in curvature of both
indenters.
Materials and techniques

Two types of randomly rough surfaces covered with spherical caps
were designed using two different techniques as described below.
The rst surface (RA for Rigid Asperities) consists of glass lenses
(BK7, Melles-Griot, radius of curvature 13 mm) covered with a
distribution of micrometer sized rigid asperities with varying
heights and radii of curvature. The second surface (SA for So
Asperities) is made of a nominally at silicone slab decorated with
a random spatial distribution of so spherical micro-asperities
with equal radius of curvature and varying heights.
Table 1 RA's mean topographical characteristics

texp(s) f �h (mm) �R (mm)

15 0.34 � 0.02 9.0 � 2.4 49.6 � 12.8a

60 0.41 � 0.05 29.6 � 10.1 64.4 � 19.6b

a From 293 asperities. b From 119 asperities.
RA lenses

RA's topography was obtained by replicating condensed liquid
droplets on a hydrophobic surface. Water evaporating from a bath
heated at 70 �C was rst allowed to condense on a hexamethyldi-
silazane (HMDS) treated hydrophobic glass slide kept at room
temperature, resulting in a surface with myriads of droplets. This
surface was then covered with a degassed mixture of
polydimethylsiloxane (PDMS) cross-linkable liquid silicone (Sylgard
184, Dow Corning) cured at 70 �C for 2 hours. One is le, upon
demolding, with a PDMS surface with concave depressions, which
are negative images of the condensed water droplets. These PDMS
samples then serve as molds to replicate rigid equivalents on the
glass lenses using a sol–gel imprinting process fully described
elsewhere.17 An example of the resulting pattern with smooth
spherical caps of various sizes is shown in Fig. 1a. By changing the
time of exposure texp of the HMDS treated glass to water vapor,
different surfaces with different asperity sizes and densities are
obtained as a result of droplet coalescence during the water
condensation process. Two patterns with small (resp. large) asper-
ities were made with texp ¼ 15 s (resp. 60 s). They are respectively
872 | Soft Matter, 2015, 11, 871–881
referred to as RA� and RA+. Their topography at the apex was
characterized with an optical prolometer (Microsurf 3D, Fogale
Nanotech, France) to extract the mean surface fraction f covered
by the asperities (Table 1) and the distributions of their heights h
and radii of curvature R. Both distributions are found to be
Gaussian (not shown) with means �h, �R and standard deviations
given in Table 1. For RA+, h is found to be proportional to R (Fig. 2).
This suggests that the spherical shape of the asperities is uniquely
controlled by the contact angle q of water droplets on the HMDS
treated surface prior to molding. In this case, one expects, indeed,
the relationship h ¼ R(1 � cos q). Fitting the data shown in Fig. 2
yields q� 57�, very close to 55� which is the value of the advancing
contact angle we measured for water droplets on HMDS treated
glass. For RA� however, no evident correlation has been observed,
for which we have no clear explanation (Fig. 2, inset).
SA samples

SA samples were obtained by cross-linking PDMS in molds
(2.5 mm deep) fabricated with a desktop CNC Mini-Mill
machine (Minitech Machinary Corp., USA) using ball end mills of
radius 100 mm, allowing the design, with 1 mm resolution, of
patterns with controlled surface densities and height distributions
This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Height h of the spherical micro-asperities as a function of their
radius of curvature R for the RA+ lens (f ¼ 0.41). Inset: same for the
RA� lens (f ¼ 0.34). The solid line is a linear fit of the data.

‡ Measurements of radii of curvature were performed using prolometry images
obtained at a high magnication. Identifying for a given asperity its radius of
curvature would imply matching the position of this asperity with its position
in a zoomed out image of the macroscopic apparent contact.
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(Fig. 1b). Spherical cavities were randomly distributed over 1 cm2

with a non-overlapping constraint with two different surface frac-
tions f ¼ 0.1 and 0.4. Their heights as obtained from a uniform
random distribution were in the range of 30–60 mm. SA samples
with f ¼ 0.1 are thus referred to as SA� further down, and those
with f ¼ 0.4 as SA+. Half of the bottom of the mold was kept
smooth so that SA samples had both a patterned part and a smooth
one. The smooth part was used in a JKR contact conguration,18

which allowed the measurement of Young's modulus E of each
sample. Secondly, it providedmeans to locate accurately the center
of the apparent contacts formed on the patterned part. Since
contacts with the patterned part were obtained by a simple trans-
lation of the sample, the center within the contact images was
taken as the center of the JKR circular contact, obtained using
standard image analysis.

As detailed above, RA samples display spatial and height
distributions of asperities set by both the evaporation and the
sol–gel processes, which can only be characterized a posteriori.
SA samples however have a statistical roughness which can be
nely tuned with any desired pattern, both in height and
spacing. As a result, SA at surfaces are very appropriate for the
statistical investigation of contact pressure distribution as they
can be produced at centimeter scales thus allowing for several
realizations of the contact at different positions on the
patterned surface. Nevertheless, in contrast to SA asperities
which always present a microscopic surface roughness inherent
to themilling procedure, RAmicro-asperities are very smooth. It
thus makes them especially suitable for the investigation of
frictional properties, as microcontacts obtained with a smooth
rubber substrate can be assimilated to single asperity contacts.

Experimental setups

For RA lenses, normal contact experiments were performed by
pressing the lenses against a thick at PDMS slab under a
This journal is © The Royal Society of Chemistry 2015
constant normal load P. Its thickness (�15 mm) was chosen to
ensure semi-innite contact conditions (i.e., the ratio of the
contact radius to the specimen thickness was more than ten19).
For SA at samples, sphere-on-plane contacts were obtained by
pressing them against a clean BK7 spherical lens (LA1301,
Thorlabs Inc.) with a radius of curvature of 128.8 mm, �10
times larger than the radius of curvature of the patterned RA
lenses. To ensure comparable semi-innite contact conditions,
SA samples remained in adhesive contact against a �15 mm
thick PDMS slab. The experiments were performed with a
home-made setup described in ref. 20 and 21. Using a combi-
nation of cantilevers and capacitive displacement sensors, both
the normal (P) and interfacial lateral (Q) forces are monitored in
the range of 0–2.5 N with a resolution of 10�3 N. This setup also
provides simultaneous imaging of the microcontacts with the
combination of a high resolution CCD camera (Redlake
ES2020M, 1600 � 1200 pixels2, 8 bits) and a long-working
distance Navitar objective. Once illuminated in transmission
with a white LED diffusive panel, microcontacts appear as
bright disks. Measuring their areas using standard image
thresholding techniques provides a direct measure of their
entire spatial distribution. The total true area of contact A is
then obtained by summing all microcontact areas. In addition,
assuming the validity of the Hertzian contact theory at the scale
of the asperity and knowing E, radii of curvature R of each
asperity and n ¼ 0.5, Poisson's ratio,20,21 the disk radii ai are a
direct measure of the local normal forces pi since

pi ¼ 4Eai
3

3ð1� n2ÞR (1)

As described previously,21 a linear relationship between the

total normal load Pc ¼
X
i

pi and the measured P is systemati-

cally found for all SA samples, thus validating Hertz assump-
tion. However, the slope of Pc versus P depends slightly on the
optical threshold used to detect ai. To recover a unit slope, we
thus calibrated the optical threshold with a reference sample of
known Young's modulus. For all other samples, we then kept the
same optical threshold and tuned E for each sample within its
measured uncertainties to recover a unit slope. Note that Hertz
contact theory assumes that ai/R � 1 in order to remain in the
linear elastic range. In our experiments, we nd that, at the highest
normal load, ai/R is at maximum of the order of 0.3. Investigation
by Liu and coworkers22 usingmicro-elastomeric spheres in contact
with a plane (contact radius a) has shown however that Hertz
theory remains accurate for values of a/R up to �0.33.

For RA samples, such a calibration method could not be
applied as it requires knowing the radii of curvature of all
asperities to evaluate pi. Because of this limitation,‡ we chose
the threshold arbitrarily from the contact images between two
extremal values for which the change in total area was found to
Soft Matter, 2015, 11, 871–881 | 873
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Fig. 3 Sketch of the geometric configuration for the indentation of (a)
SA and (b) RA surface topography. For both configurations, D is the
prescribed indentation depth taking as a reference for the vertical
position of the indenting sphere the altitude at which the smooth
surface is touching the uppermost asperity.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
3 

D
ec

em
be

r 
20

14
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

ie
rr

e 
et

 M
ar

ie
 C

ur
ie

 o
n 

29
/0

4/
20

15
 0

9:
55

:4
3.

 
View Article Online
vary marginally. Consequently, it was not possible to measure
any local normal force distribution for RA samples.

Friction experiments with RA patterned lenses were per-
formed with another experimental setup described previously.23

RA lenses were rubbed against a smooth PDMS slab (E ¼ 3 �
0.1 MPa) keeping both P and the driving velocity v constant. The
setup allowed variation of v from a few mm s�1 up to 5 mm s�1

thus allowing simultaneous measurements of P and Q with a
resolution of 10�2 N.

Multi-asperity contact models

To investigate quantitatively the effects of elastic interactions
between micro-asperity contacts on the real contact area and
related pressure distribution, two different multi-asperity
contact models were considered, both of which include elastic
interactions at different length scales. The rst one was derived
by Greenwood and Tripp (GT)13 as an extension to the case of
rough spheres of the seminal model of Greenwood and Wil-
liamson (GW) for the contact between nominally at surfaces.
The second one was developed more recently by Ciavarella
et al.14,15 It consists of a modied form of GW's model, with
elastic interactions betweenmicrocontacts incorporated in a rst
order-sense. Both models describe the contact mechanics of
rough surfaces with random distributions of spherical asperities,
which is what we investigate here experimentally. As a conse-
quence of this simplied form of surface topography, it was not
necessary to consider more rened contact models based on a
spectral description of the surfaces such as Persson's model.8

In GT's model, Hertz theory of elastic contact between a smooth
sphere and a smooth plane is extended by adding roughness to
the plane. As a starting point, the relationship between the local
pressure and the local real contact area within an elementary
portion of the rough contact is assumed to obey GW's theory.
Accordingly, micro-asperity contacts are supposed to be Hert-
zian and to be independent, that is, the elastic displacements
due to the normal force exerted on one asperity have a negli-
gible effect on any other asperity. However, the use of GW's
relationship requires that the separation of both surfaces at any
location within the macroscopic contact is known, i.e. the shape
of nominal surfaces under deformation is determined. This
requirement is deduced from the linear elasticity theory
(Green's tensor, see (ref. 24) for instance) that introduces long
range elastic interactions at the scale of the apparent Hertzian
contact. As opposed to GW's model, which can be derived
analytically, in GT's model, calculation of the real contact area
and pressure distribution can only be done with an iterative
numerical integration of a set of coupled equations, as
described in ref. 13.

In Ciaravella et al.'s model, the approach includes in the rst
order-sense elastic interactions between Hertzian micro-
asperity contacts, i.e. for every asperity a displacement is
imposed which is sensitive to the effect of the spatial distribu-
tion of Hertzian pressures in the neighboring asperities. For
each micro-asperity contact, a shi of the position of the
deformable surface is introduced, which results from the
vertical displacement caused by the neighboring ones.
874 | Soft Matter, 2015, 11, 871–881
Accordingly, the indentation depth di of the ith micro-asperity
contact is

di ¼ d0i þ
XN
jsi

aijdj
3=2; (2)

where d0i > 0 is the indentation depth in the absence of any
elastic coupling between microcontacts and aij are the elements
of the interaction matrix. As shown in Fig. 3, d0i is a purely
geometrical term simply given by the difference between the
positions of the two undeformed surfaces for the prescribed
indentation depth D. The sum in the rhs of eqn (2) represents
the interaction term derived from the Hertz contact theory. Our
study slightly differs from Ciavarella et al.'s model as we take for
aij an asymptotic expansion of the Hertz solution for the vertical
displacement of the surface, instead of its exact expression.
Elements aij of the interaction matrix thus read

�
aij

� ¼ � 4
ffiffiffiffiffi
Rj

p
3p

1

rij
; isj; (3)

where rij is the distance between asperities i and j and Rj is the
radius of curvature of the jth asperity. This approximation
avoids evaluating at each step of the calculation the interaction
matrix [aij], which consequently depends only on the surface
topography. Such an approximation is valid as long as the
average distance between asperities L is much larger than the
average asperity microcontact radius ā. For RA samples, optical
measurements reveal that this criterion is satised as the ratio
L/ā, which is a decreasing function of P, remains between 6 and
8. For SA samples, one also measures that L/ā z 16–32 for SA�

and L/āz 9–15 for SA+. The above detailedmodels are obviously
This journal is © The Royal Society of Chemistry 2015
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valid as long as no contact occurs in regions between the top
parts of the spherical caps.
Normal contacts
RA measurements

In order to stay consistent with the hypothesis of the contact
models, true contact area measurements for RA lenses were
performed for normal loads P for which only tops of the micro-
asperities make contact with the PDMS slab. While for RA+

lenses, this is observed for the entire range (up to 0.6 N) of P, for
RA� lenses this occurs as long as P # 0.2 N. Fig. 4 shows the
total contact area A versus P for both RA lenses contacting a
smooth PDMS substrate. A(P) exhibits a non-linear power law
behavior with the following exponents: 0.812 � 0.009 for RA�

and 0.737 � 0.042 for RA+.
To compare these results with Ciaravella et al.'s model,

calculations were carried out using simulated lens topographies
generated from Gaussian sets of asperity heights calculated
using the experimental parameters reported in Table 1. The
radii of curvature of the asperities were varied as a function of
their heights using the experimentally measured R(h) relation-
ship. Asperities were spatially distributed according to a
uniform distribution with a non-overlap constraint. In order to
minimize bias in their spatial distribution, asperities were
positioned by decreasing the size order.

Fig. 4 shows the results of such simulations using Ciavar-
ella's model. Uncertainties in the experimental determination
of surface parameters (mainly the R(h) relationship) were found
to result in some scatter in the simulated A(P) response. In order
to account for this scatter, the simulated curves are represented
Fig. 4 log–log plot of the real area of contact A versus P for both RA�

(a) and RA+ (b) lenses. The upper and lower limits of the error bars
correspond to the total areas measured with the arbitrarily chosen
extremal values of the optical threshold (see text). Red shaded areas
correspond to the predictions of Ciavarella et al.'s model14,15 by setting
aij to 0 in eqn (2). Green areas correspond to aij s 0. An area's extent
characterizes the scatter in the simulations, arising from uncertainties
in the experimental determination of the topography parameters.

This journal is © The Royal Society of Chemistry 2015
as colored areas in Fig. 4. A good agreement is observed between
theory and experiments only when elastic interactions are
accounted for. Without such interactions (i.e. when the term aij

in eqn (2) is set to zero), the actual contact area at a given P is
clearly underestimated.
SA measurements

For SA samples in contact with the glass lens of radius of
curvature 128.8 mm, microcontacts always occur at the top of
the asperities for the whole investigated P range of up to 0.6 N.
For each P, the real area of contact A was averaged over N ¼ 24
different locations on the sample. This allowed us to probe
statistically different contact congurations while reducing the
error on A by a factor

ffiffiffiffi
N

p
. Fig. 5 shows the resulting A versus P

for both SA� and SA+ samples. As found with RA lenses, A(P)
curves are also sub-linear and are tted well by power laws. For
both tested surface densities, power law exponents are found to
be density independent, with 0.945� 0.014 for SA� and 0.941�
0.005 for SA+. Changing f from 0.1 to 0.4 mainly results in an
increase of A(P) at all P (Fig. 5). As previously done with RA
samples, both SA datasets are compared with Ciaravella et al.'s
model14,15 predictions, with both aij ¼ 0 and aij s 0. Calcula-
tions were performed using the exact topography used to obtain
SA samples, and A versus P curves were obtained with the exactly
same 24 contact congurations. Errors on the calculated A
values were obtained by varying Young's modulus within its
experimental uncertainties, yielding the shaded areas of Fig. 5.
Red shaded areas correspond to setting aij ¼ 0 in eqn (2), while
green areas correspond to aij s 0. At low normal loads (P # 0.1
N), the effect of the elastic interaction on A is almost negligible,
Fig. 5 log–log plot of the real area of contact A versus P for both SA�

(f ¼ 0.1, blue diamonds) and SA+ (f ¼ 0.4, blue circles) samples. The
inset is a close-up for 0.2 # P # 0.6 N. Error bars are given by the
standard deviation of A on 24 different contact configurations. Red
shaded areas correspond to the predictions of Ciavarella et al.'s
model14,15 by setting aij to 0 in eqn (2). Green areas correspond to aij s
0. An area's extent characterizes the scatter in the simulations, arising
from uncertainties in the experimental determination of E.

Soft Matter, 2015, 11, 871–881 | 875
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but it becomes more pronounced at higher ones (P > 0.1 N),
resulting in a larger true contact A. As shown in Fig. 5, our data
at P > 0.1 N are clearly better captured by the interacting model
rather than the non-interacting one for both surface densities.

These A(P) measurements, together with those obtained with
RA lenses, indicate that including an elastic interaction is thus
essential to have a complete description of the contact
mechanics of such systems. Yet, it remains unclear which of the
short range (interaction between neighboring asperities) and/or
long range (determined by the geometry of the macroscopic
contact) parts of the elastic interaction predominate. We now
address precisely this question in the following.
Role of elastic interactions

True contact area load dependence. Using contact imaging
techniques, we were able to probe how the total true contact
area varies with the applied load for contacts between a smooth
surface and the different model rough surfaces decorated with
spherical caps. For all sizes and spatial distributions of the
micro-asperities tested here, we found that A(P) curves could be
satisfactorily described within the framework of a simple rough
contact model with a classical assumption that Hertzian contact
occurs at the scale of the micro-asperities. As opposed to both
GW's and GT's models, our approach takes into account in an
approximate manner the elastic coupling between asperities
which is oen neglected to describe the contact mechanics of
rough interfaces.

For all investigated SA topographies, a nearly linear rela-
tionship is found for A(P), which is consistent with the
conclusions of the paper of Greenwood and Tripp13 which states
that A(P) is “approximately” linear. More generally, our ndings
for SA surfaces do not depart from most of the asymptotic
development at low P of most current rough contact models for
nominally at surfaces.10 Such models, indeed, also predict a
linear A(P) relationship. Conversely, for RA topographies, a non-
linear power law like A(P) relationship is found. Such deviations
from linearity were actually pointed out in recent theoretical
studies by Carbone and Bottiglione25 for nominally plane–plane
rough contacts. These authors pointed out indeed that asperity
contact models deviate very rapidly from the asymptotic linear
relationship even for very small, and in many cases, unrealistic
vanishing applied loads. For our present sphere-on-plane
contact, it is legitimate to wonder if the magnitude of the
deviations arises either from the differences in the asperity
height and size distributions and/or themacroscopic curvatures
of the spherical indenter. To provide an answer to this question,
simulations using Ciaravella et al.'s model, with the exactly
same asperity distribution (height, radius of curvature and
lateral distribution) but different radii of curvature Rl of the
macroscopic lens indenter (Rl ¼ 13 mm and Rl ¼ 128.8 mm, as
in the experiments), were performed. In both cases, A(P) curves
are found to follow asymptotically (for 0.005# P# 1 N) a power
law, whose exponent is �0.86 with Rl ¼ 13 mm and �0.93 with
Rl ¼ 128.8 mm. Decreasing Rl thus enhances the nonlinearity of
the A(P) relationship. It is likely that such effects simply result
from the fact that the increase in the gap between both the
876 | Soft Matter, 2015, 11, 871–881
PDMS and the lens from the edges of the contact is larger for a
lens with a small radius of curvature. For a load increase dP, the
increase in the number of microcontacts at the periphery of the
apparent contact area is thus expected to be more pronounced
with a large Rl. This should translate into a more linear A(P)
dependence for large Rl. This hypothesis is further supported by
a simple calculation detailed in Appendix A. Assuming that the
rough contact obeys the Hertz law at the macroscopic length
scale, one can express the gap height between surfaces at the
periphery of the contact as a function of the Hertzian radius and
the radius of curvature of the indenting lens. Equating this gap
height to the standard deviation of the height distribution
yields a characteristic length scale x which corresponds to the
size of the annular region surrounding the Hertzian contact.
This length is found to vary as xf Rl

5/9P�1/9. This conrms that
for a given applied load, the extension of the contact area from
its Hertzian value, resulting from microasperity contacts,
should be enhanced when Rl increases.

Of course, it is expected that the non-linearity of the A(P)
relationship could also depend on the statistical properties of
the asperity distributions. This is indeed suggested by eqn (A.9)
which predicts that x scales as s2/3, where s is the standard
deviation of the height distribution of asperities. One can also
mention the previous theoretical work of Archard,3 based on the
hierarchical distribution of spherical asperities on a spherical
indenter. This model predicts that A(P) follows a power law
whose exponent varies between 2/3 (i.e. the limit of the smooth
Hertzian contact) and unity (when the number of hierarchical
levels of asperities is increased).

Before addressing further the issue of the elastic interactions
between microcontacts, some preliminary comments are war-
ranted, regarding the sensitivity of the A(P) relationship to the
details of the spatial distribution of microasperities. For that
purpose, one can consider a comparison between experimental
and theoretical results for RA patterns. While the micro-asper-
ities were distributed spatially according to a uniform random
distribution in the simulations, such a distribution probably
does not reproduce the features of the droplet pattern very
accurately. As a result of droplet coalescence during conden-
sation, some short distance order is probably achieved between
asperities as suggested by a close examination of Fig. 1a.
However, the good agreement between the experiments and the
simulations in Fig. 4a shows that the load dependence of the
actual contact area is not very sensitive to the details in the
spatial distribution of asperities. As far as the normal load
dependence of the real contact area is considered, the relevant
features of surface topography are thus likely to be mainly the
surface density of micro-asperities, and their size and height
distributions.

Microcontacts and pressure spatial distributions. So far, we
have only considered the effect of the elastic interaction on the
load dependence of A, and thus neglected any spatial depen-
dence of the microcontact distribution. Direct comparison of
such data with Ciaravella et al.'s model calculations is not easily
accessible for RA samples since it would require knowledge of
all asperity positions and respective radii of curvature. With SA
samples however, this can be easily done, as positions and radii
This journal is © The Royal Society of Chemistry 2015
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of curvature of asperities are known by the design of the
micromilled pattern. Fig. 6a–c show such a direct comparison
at three increasing normal loads P (P ¼ 0.02, 0.2, and 0.5 N) for
the case of the SA+ sample. As expected, predicted micro-
contacts with aij s 0 almost always match the measured
microcontacts (see the green circles in the gure). For
comparison, red circles at the predicted positions of the model
without elastic interaction have been overlapped on the
contact images. Clearly, the non-interacting model predicts
contacts at locations within the apparent contact which are not
seen in the experiment.

To perform a more quantitative comparison with theo-
retical predictions, we computed for both the experimental
and calculated points, the local radial pressure proles p(r).
The latter, which is expected to be radially symmetric for a
sphere-on-plane normal contact, was obtained by summing
up local forces pi exerted on all microcontacts located within
an annulus of width dr ¼ 0.25 mm and radius r centered on
the apparent contact center (obtained from JKR experi-
ments). To reduce the statistical error, averaging of p(r) for
several contact congurations was then performed. For the
experiment, 24 contact congurations (compatible with the
size of the SA pattern) at different locations on the same SA
Fig. 6 (a), (b), (c) Images of the interface at P¼ 0.02, 0.2, and 0.5 Nwith f

circles indicate Ciaravella et al.'s model predicted microcontacts with aij
Hertz contacts for the corresponding P. (d–f) Angularly averaged pressu
sample with f ¼ 0.4 at increasing normal loads P. Both p and r are norm
radius aH. The black dashed line corresponds to Hertz prediction. Blue so
asperity height density and the same surface fraction f. The red dot-d
interaction term aij ¼ 0, while the green dashed lines correspond to the fu
over 1000 independent pattern realizations with f ¼ 0.4 and a uniform

This journal is © The Royal Society of Chemistry 2015
pattern were used. For the calculated data (Ciaravella et al.'s
model), 1000 statistically different SA patterns were used
and normal loading was done at the center of the SA pattern.
Both aij ¼ 0 and aij s 0 data were computed. To test the
effect of including an elastic interaction at different length
scales, we also computed p(r) as predicted by GT's model. As
discussed previously, this model indeed constitutes in some
sense a ‘zeroth order approximation’ of Ciaravella et al.'s
model, as it only takes into account long range elastic
interactions whose extent is set by the size of the apparent
contact. GT's calculation was implemented with Mathema-
tica 9 (Wolfram Research Inc., USA), using a random asperity
height distribution with heights chosen uniformly between
30 and 60 mm.

Fig. 6d–f show the results of the example of SA+ for the three
increasing loads P shown in Fig. 6a–c. As already anticipated
from Fig. 6a–c, Ciaravella et al.'s model with aij s 0 gives a
reasonably good t of the measured data. Taking aij ¼ 0 yields
larger discrepancy with the experimental points, revealing that,
on average, the effect of the elastic interaction is to increase
signicantly the apparent radius of contact, the higher the
normal load P. As pointed out by Greenwoood and Tripp in their
original paper, the effect of roughness is to add a small tail to
¼ 0.4 SA sample. Microcontacts appear as white disks. Green (resp. red)
s 0 (resp.aij ¼ 0). On all images, the white dashed line circles delimit
re p distribution as a function of the distance to the center r on a SA
alized by respectively, Hertz' maximum pressure p0 and Hertz contact
lid lines are fits using the Greenwood–Tripp model (GT) with a uniform
ashed lines are predictions of Ciaravella et al.'s model14,15 setting the
ll model with aij s 0. Both the latter predictions are statistical averages
height distribution.

Soft Matter, 2015, 11, 871–881 | 877
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Fig. 7 (a) Microcontact density h, normalized by the mean number of
micro-asperities per unit area h0, versus local pressure p for the SA
sample with f ¼ 0.4. (b) Mean microcontact area ā versus local
pressure p for the same sample. On both graphs, black disks are the
results of GT's model predictions, the green disks are predictions of
Ciaravella et al.'s model with aij s 0 and crosses correspond to the
experimental data at three different loads P ¼ 0.02, 0.2, and 0.5 N.
Thick black lines are power law fits of GT's model predicted data, while
green solid lines are power law fits of Ciaravella et al.'s model predicted
data for p < p*, with p* z 50 Pa.
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the Hertzian pressure distribution which corresponds to the
annular region around the Hertzian contact in which the
separation is comparable with the surface roughness. Indeed,
as already mentioned, an order of magnitude of this tail is
provided by the characteristic length x which scales as R5/9s2/3

(see Appendix A). It can be noted that this scaling is very close to
that deduced from different arguments by Greenwood and
Tripp (i.e. xf

ffiffiffiffiffiffi
Rs

p
).

Given the experimental error bars, it is difficult to clearly
delineate which of Ciaravella et al.'s interacting model or
GT's model best ts the measured data. Actually, to the rst
order, both models t the experiments equally well, and
constitute, to the best of our knowledge, the rst direct
experimental validation of both models. This suggests, in
particular, that if one needs to calculate the spatial distri-
bution of pressure p(r), GT's model is a very good approxi-
mation. Second, it indicates that short range local elastic
interaction effects cannot easily be caught when analyzing
the radial pressure distribution, or that these effects are of
the second order.

The fact that p(r) distributions are very similar for both
models motivates a closer examination of the distributions of
quantities from which p(r) derives. For that purpose, the
pressure dependence of surface density h and mean radius ā
of microcontacts were considered (where h is dened as the
number of microcontacts per unit area). In Fig. 7, theoretical
(as calculated from Ciavarella's model with aij s 0) and
experimental values of h and ā are reported in a log–log plot
as a function of the contact pressure p. Two different domains
are clearly evidenced. When the pressure is greater than a
critical value p*, which is here of the order of 50 Pa, h and ā
exhibit with p a power law behavior whose exponents are
found to be equal to 0.4 and 0.2, respectively, from the
simulated data. As detailed in Appendix B, these exponents
are identical to those predicted by the GW model for nomi-
nally at surfaces in the case of a uniform distribution of
asperity heights (h f p2/5 and ā f p1/5). This means that as
long as p > p*, the pressure dependence of h and ā is insen-
sitive to both the effects of the elastic coupling between
micro-asperity contacts and to the curvature of the nominal
surfaces. Below the critical pressure p*, a power law depen-
dence of h and ā is still observed but with exponents,
respectively 0.78 � 0.11 and 0.37 � 0.02, which depart from
the GW predictions (Fig. 7). We do not yet have a denite
explanation for these deviations which are systematically
observed, irrespective of the number of surface realizations
(up to 8000) considered. They could tentatively be attributed
to some short range effects of the pair correlation function
associated with asperity distribution. However, the important
point is that p* always corresponds to very low contact pres-
sures. From an extended set of numerical simulations where
parameters such as asperity density, radius of curvature and
height distribution were varied by at least one order of magni-
tude, p*was systematically found to be in the range of 101–103 Pa.
For the considered contact conditions, such a pressure range
corresponds to a very narrow domain at the tail of the pressure
distribution whose physical relevance is questionable. In other
878 | Soft Matter, 2015, 11, 871–881
words, both the simulations and the experimental data indicate
that the GW theory is able to describe accurately themicrocontact
distribution over most of the investigated pressure ranges
without a need to incorporate the effects of short range elastic
interactions in the rough contact description.
Frictional properties

We now turn onto the frictional behavior of RA lenses against
a smooth PDMS slab. As mentioned above, RA asperities are
very smooth which allows us to consider the associated micro-
asperity contacts as single-asperity contacts. RA surfaces thus
provide systems with a single roughness scale as opposed to
SA surfaces which present an additional microscopic rough-
ness. In what follows, we address from preliminary results the
This journal is © The Royal Society of Chemistry 2015
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Fig. 8 Q versus P in steady sliding (v ¼ 0.5 mm s�1) for contacts
between a smooth PDMS substrate and RA� (a) and RA+ (b) lenses. On
both graphs, dashed lines are the theoreticalQ given by eqn (4), taking
for A its measured values and for s0 ¼ 0.34 MPa, the average shear
stress obtained with the smooth lens. Solid lines are fits of the
experimental data with eqn (4), yielding s0 ¼ 0.40 MPa for RA� and
0.49 MPa for RA+. Inset: Q versus P for the smooth lens, in steady
sliding. The solid line is a fit of the data using eqn (4), taking for A its
measured value in steady sliding.
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issue of the contribution of individual micro-asperity contact
to the macroscopic friction force. For P within [0.01–0.6] N
and driving velocities v up to 5 mm s�1, both RA+ and RA�

lenses systematically exhibited smooth steady state friction
with no evidence of contact instabilities such as stick-slip, or
strong changes in their frictional behavior. Thus, only results
obtained at an intermediate velocity of v ¼ 0.5 mm s�1 are
reported here. Fig. 8 shows the resulting lateral force Q versus
normal force P curves for both RA� (Fig. 8a) and RA+ (Fig. 8b)
samples, as well as for a reference glass lens with the same
radius of curvature and covered with a thin smooth layer of
the same sol–gel material used for RA lenses (Fig. 8b, inset).
In all cases, Q is found to vary non-linearly with P. In the
simplest description, the total friction force Q is expected to
be the sum of local friction forces qi acting on all contacting
micro-asperities. According to previous studies using glass/
PDMS elastomer contacts,26,27 a constant, pressure indepen-
dent, shear stress s0 can be assumed to prevail at the intimate
contact interface between the asperities and the PDMS elas-
tomer, yielding qi ¼ s0(pai

2). Within this framework, Q should
thus be written as

Q ¼ s0A (4)

with A ¼
X
i

ðpai2Þ being the real area of contact. In the calcu-

lation, we take for A the experimental values measured under
normal indentation aer verifying from optical contact obser-
vations that the microcontact areas during sliding are not
signicantly different from those achieved under static
loading.§ As a rst attempt, the frictional shear stress s0 was
taken as the experimental value calculated from the ratio of the
friction force to the actual contact area measured during steady
state friction with the smooth lens. As shown by the dotted lines
in Fig. 8a and b, choosing this shear stress value underestimates
the experimental data for both small and large size asperity RA
samples. Fitting the experimental data with eqn (4) using a least
square method yields however s0 ¼ 0.4 and 0.49 MPa for small
and large size asperities, respectively. There is thus some
evidence of a dependence of the frictional shear stress on the
contact length scale, the shear stress at the microcontact scale
being larger than that at the scale of a millimeter sized contact
(�18% and �44% increase for RA� and RA+, respectively).
Curvatures of the micro-asperity contacts being larger than that
of the smooth contact with the glass lens, the increase in s0 at
small length scales could be attributed to bulk viscoelastic
dissipation as a result of the ploughing of the PDMS
substrate by the micro-asperities. However, the fact that Q
does not vary signicantly when the sliding velocity is
changed by nearly three orders of magnitude (from 0.01 to
5 mm s�1) does not support this assumption. This weak
contribution of viscoelastic dissipation to friction can be
related to the low glass temperature Tg ¼ �120 �C of the
§ When looking carefully, a slight decrease of individual areas of microcontacts
can be seen between the static and sliding regime. This decrease remains
however difficult to quantify.

This journal is © The Royal Society of Chemistry 2015
PDMS elastomer. Indeed, for the considered micro-asperity
size distributions, the characteristic strain frequency asso-
ciated with the microcontact deformation is v/ā z 10 Hz, i.e.
well below the glass transition frequency at room tempera-
ture (more than 108 Hz). Other effects, arising for example
from non-linearities in the highly strained microcontacts
could be at play, which will be the scope of further investi-
gations. However, these experimental results show that fric-
tional stresses measured at macroscopic length scales may
not be simply transposed to microscopic multicontact
interfaces.
Soft Matter, 2015, 11, 871–881 | 879
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Conclusion

In this work, we have studied both normal contact and friction
measurements of model multicontact interfaces formed
between smooth surfaces and rough surfaces textured with a
statistical distribution of spherical micro-asperities. Two
complementary interfacial contacts were studied, namely a
rigid sphere covered with rigid asperities against a smooth
elastomer, and a smooth rigid sphere against a at patterned
elastomer. In both cases, experimental A(P) relationships were
found to be non-linear and well tted by Ciaravella et al.'s
model taking into account the elastic interaction between
asperities. Additional information regarding the nature of the
elastic coupling between asperities was provided from the
examination of the proles of contact pressure, contact density
and average radius of asperity contacts. While the long range
elastic coupling arising from the curved prole of the indenter
was found to be an essential ingredient in the description of
the rough contacts, both experimental and simulation results
demonstrate that, for the considered topographies, short range
elastic interactions between neighboring asperities do not play
any detectable role. As a consequence, the pressure depen-
dence of both the density and the radius of asperity contacts
within the macroscopic contact are very accurately described
using the GW model which neglects asperity interactions. To
the best of our knowledge, these results constitute the rst
direct experimental validation of GW and GT models. The
question arises as to what extent our conclusion regarding the
elastic coupling could be extrapolated to more realistic surface
roughnesses as theoretical simulations using, for example self-
affine fractal surfaces, indicate a signicant contribution of
such effects. From an experimental perspective, this issue
could be addressed by considering more sophisticated
patterned surfaces with hierarchical distributions of micro-
asperities.
Appendix
A Gap between surfaces in Hertzian contact

In a Hertzian sphere-on-at contact, the vertical displacement
uz of the free surface outside the contact can be expressed as18

uzðrÞ ¼ 4

3K

p0

2a

h�
2a2 � r2

�
arc sinða=rÞ þ ra

�
1� a2

�
r2
�1=2i

; r$ a

(A.1)

where p0 is the maximum Hertzian pressure, a is the contact
radius and K is the elastic constant dened by K¼ 4/3E/(1 � n2).
From the expression of the maximum contact pressure

p0 ¼ 3

2p

aK

Rl

(A.2)

where Rl is the radius of the spherical indenter, eqn (A.1) can be
rewritten as

uzðrÞ ¼ 1

pRl

��
2a2 � r2

�
arc sinða=rÞ þ ra

�
1� a2

�
r2
�1=2�

; r$ a

(A.3)
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The prole of the sphere is given by

sðrÞ ¼ 1

2Rl

�
2a2 � r2

�
(A.4)

The gap [u](r) between both surfaces is thus given by

½u�ðrÞ ¼ 1

pRl

h�
2a2 � r2

�
arc sinða=rÞ þ ra

�
1� a2

�
r2
�1=2i

� 1

2Rl

�
2a2 � r2

�
(A.5)

A series expansion of eqn (A.5) at r ¼ a yields

½u�ðrÞ � 8

3

ffiffiffi
a

p ffiffiffi
2

p

pRl

ðr� aÞ3=2 þO
	
ðr� aÞ2



(A.6)

For a rough contact, a characteristic length x can be dened
as the length over which the above calculated gap between both
surfaces is of the order of magnitude of some length charac-
terizing the asperity distribution, like the standard deviation of
the height distribution s. From the condition [u](a + x) ¼ s,

xx

�
3p

8
ffiffiffi
2

p
�2=3

Rl
2=3s2=3

a1=3
(A.7)

or

x

a
x

�
3p

8
ffiffiffi
2

p
�2=3

Rl
2=3s2=3

a4=3
(A.8)

which can also be expressed as a function of the applied normal
load P

xx

�
3p

8
ffiffiffi
2

p
�2=3

Rl
5=9s2=3K1=9P�1=9

x

a
x

�
3p

8
ffiffiffi
2

p
�2=3�

K2Rls
3

P2

�2
9

(A.9)
B GW's model for a uniform height distribution of spherical
asperities

In this appendix, we formulate the classical GW's model for the
contact between two nominally plane rough surfaces in the case
of a uniform height distribution of the spherical asperities.
Accordingly, non-interacting Hertzian contacts are assumed to
occur locally at the scale of the micro-asperities. The surface
density of microcontacts is given by

h ¼
ð N
d

jðzÞdz (B.1)

where d is the separation between the reference planes of the
two surfaces and j(z) is the expected number of contacts per
unit area at a height between z and z + dz above the reference
plane. Similarly, the contact pressure p for a given approach d
between the surfaces can be dened as
This journal is © The Royal Society of Chemistry 2015
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p ¼
ð N
d

KR1=2ðz� dÞ3=2jðzÞdz (B.2)

where p is dened as the ratio of the applied normal load to the
nominal area of contact and K ¼ 4/3E/(1 � n2). In the case of a
uniform distribution of the asperity height with standard
deviation s, one can writeð N

�N

jðzÞdz ¼ ks ¼ h0 (B.3)

where k is a constant and h0 is the surface density of asperities.
The surface density of contacts and the contact pressure can
then be rewritten as

h ¼
ð D�d

0

kdx (B.4)

p ¼
ð D�d

0

KR1=2x3=2dx (B.5)

which gives

h ¼ kðD� dÞ ¼ h0

s
ðD� dÞ (B.6)

p ¼ 2

5
KR1=2ðD� dÞ5=2 h

h0

(B.7)

whereD is themaximumasperity height above the reference plane.
From eqn (B.6) and (B.7), the relationship between the surface
density of contacts and the contact pressure can be expressed as

h

h0

¼
�
5

2

�2=5
"

p

h0KR
1=2
s3=2

#2=5

(B.8)

According to the Hertzian behaviour of micro-asperity
contacts, the relationship between the expected mean contact
radius ā and the contact pressure is given by

p ¼ K

R
ha3 (B.9)

By inserting eqn (B.9) in (B.8), the expected mean contact
radius may be expressed as

a ¼
�
2

5

�2=5
pR2s2=3

Kh0

�1=5
(B.10)
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