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2 Institut de Physique Théorique, CEA, IPhT - F-91191 Gif-sur-Yvette, France, EU
3 CNRS, URA 2306 - F-91191 Gif-sur-Yvette, France, EU

received 1 July 2010; accepted in final form 6 October 2010
published online 17 November 2010

PACS 45.70.Mg – Granular flow: mixing, segregation and stratification
PACS 45.70.Ht – Avalanches
PACS 61.43.-j – Disordered solids

Abstract – We investigate the relaxation dynamics of a dense monolayer of bidisperse beads
by analyzing the experimental data previously obtained in a fluidized bed. We demonstrate that
dynamical facilitation becomes less conserved and plays a lesser role for the structural relaxation
when approaching the glass transition. We first show that the dynamics obeys the same elementary
processes as those previously reported in a cyclic shear experiment: cage jumps aggregate on a
very short time into clusters. We then show that increasing the packing fraction makes the spatio-
temporal organization of these clusters evolve from a rather scattered and random distribution
towards a collection of sparse and finite avalanche events.
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Introduction. – The dynamics of supercooled
liquids [1,2], colloids [3] and agitated granular media [4]
dramatically slows down as these systems are cooled down
or compressed, while the particles configurations remain
similar to those of a fast relaxing liquid. Instead the
dynamics do show significant modifications: there is by
now experimental [3,5–10] and numerical evidence [11–16]
that the dynamics becomes spatially heterogeneous.
Providing a microscopic explanation for this phenom-
enology, refered to as the glass transition in the case
of thermal systems, has become a central issue [17–21].
Despite a number of theoretical proposals [22–27], there
is still no consensus about the microscopic mechanisms
responsible for it.
One particularly debated question is the role of dynam-

ical facilitation (DF ) in glassy dynamics. DF means
that a local relaxation has a very high probability of
happening nearby another relaxation after a certain time,
which is short compared to the macroscopic relaxation
time but large compared to the microscopic one. Effec-
tive models based on kinetic constraints [26,28] posit that
DF is the underlying cause of particle mobility by assum-
ing that a region of frozen atoms can recover mobil-
ity only when it is adjacent to a region already mobile.
Within the models this is due to the existence of mobility
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inducing defects, which cannot disappear (or appear)
except if there is another defect nearby. This constraint
implies that local relaxations cannot start or end with-
out correspondingly being preceded or followed in space
and time by other local relaxations. We will refer to this
property as conservation of DF . In other approaches [29],
instead, DF is an important piece of the theoretical
description but not the driving mechanism of glassy
dynamics.
Athermal systems such as colloids and granular media

are in principle very different from supercooled liquids.
Still, there are mounting evidences that their glassy
dynamics are very similar and the study of such ather-
mal systems have proven in the past to be very useful
in illustrating the microscopic mechanisms responsible
for dynamical arrest [3,7,9,10,30]. Visual observations in
colloids [31], granular media [32–34] and numerical simula-
tions of supercooled liquids [30,35] reveal that the motion
becomes intermittent at the microscopic scale: typically
a particle rattles for a long time inside a “cage” formed
by its neighbours, before jumping into another “cage”.
Consecutive cage jumps lead to structural relaxation and
long time diffusion. Clearly, understanding how consecu-
tive cage jumps conspire together and lead to macroscopic
relaxation would be very instrumental in clarifying the role
of dynamical facilitation and in explaining the emergence
of dynamical heterogeneity.
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A first attempt in this direction has been made in
the study of granular media [34], where we unveiled
that dynamical heterogeneities arise from the aggregation
of quasi-instantaneous clusters of cage jumps into long-
lasting structures. The avalanching process leading to
these structures provides a clear evidence of the important
role played by DF : a local relaxation due to a cluster of
cage jumps is typically followed nearby in space and in
time by another cluster relaxation, and so on and so forth.
Note that we do not find any other manifestation of DF
beyond avalanches1: as a consequence it becomes crucial
to characterize the evolution of this avalanching process
as the dynamics slow down in order to understand more
precisely the role played by DF . This is the main goal of
the present letter.
Apart from strengthening our previous observations, by

reproducing them in a very different system, we demon-
strate that dynamical facilitation, present at the onset of
the slowing down of the dynamics, becomes less conserved
and plays a lesser role approaching the glass transition.
This experimental observation could be decisive in
discriminating amongst the various theoretical scenarii.

Cage dynamics and relaxation events. – We
focus on the 2D fluidized bed of beads studied in [9],
whose experimental data were generously provided by
the authors. The system is made of a 1 : 1 bidisperse
mixture of N steel beads of diameters dS = 0.318 cm and
dL = 0.397 cm (dL/dS = 1.25), with respective masses
of 0.130 g and 0.266 g, confined to a circular cell of
diameter 17.7 cm= 55.7dS . Bead motion is excited by an
upward flow of air at a fixed superficial flow speed of
545± 10 cm s−1 (resp. 500± 10 cm s−1) for the 3 loosest
(resp. densest) packing fractions. The original acquisition
frame rate is 120Hz; we retain one frame out of ten
and follow the trajectories over 10,800 frames. To avoid
boundary effects, we consider a circular region of interest
of diameter D= 45dS . All lengths are expressed in
number of small grain diameters, and times in number
of frames ( 112 s). We study packing fraction ranging from
φ= 0.758 to φ= 0.802 (N = 1790 to 1975). The data for
the three densest packings were not discussed in [9].
The root mean square displacement along the x-axis

on a lag time τ , σx(τ) (fig. 1, top right) shows all the
well-known characteristics observed when approaching the
glass transition: a sub-diffusive plateau at intermediate
time scales, which enlarges when increasing the pack-
ing fraction, and the final recovery of a diffusive regime
on long times2. A common interpretation is to attribute
sub-diffusion to cage trapping (see fig. 1, top left) and

1One could relate the aggregation of cage jumps in clusters to

dynamical facilitation taking place on very short time scales. We

note, however, that this would correspond to a kind of DF quite
different from the one usually discussed in the current physical

literature.
2For the three loosest packings the slope is greater than 1/2,

indicating the presence of slow convection rolls. This effect, which

becomes stronger at even lower densities, lead us to retain only the

Fig. 1: (Color online) Dynamics and cooperative jumps. Top-
left: trajectories of a few particles at φ= 0.802 for 1000 time
frames. The color changes from blue (black) to cyan (light
grey) when a cage jump is detected. All cage jumps in the
grey area appear within 15 time steps, defining a cooperative
cluster. Top-right: root mean square displacement along the
x-direction σx(τ) for the 6 packing fractions φ= 0.758 (red) to
0.802 (blue). The horizontal dashes indicate σc the crossover
from the sub-diffusive to the diffusive regime. Bottom-left:
comparison between the relative averaged relaxation Qt/〈Qt〉t
in cyan (light grey) and the relative percentage Pt(τ

∗)/〈Pt〉t
of particles that have not jumped between t and t+ τ∗ in
black, at φ= 0.773 (τ∗ = 611). The grey area represent the lag
for which the dynamics is plotted on the right. Bottom-right:
representative example of the spatial field of the two-point
correlation function Qp,t(a

∗, τ∗). Particles jumping between t
and t+ τ∗ are surrounded by a black circle. They largely cover
the regions of fast relaxation.

long-term diffusion to successive jumps between cages (see
e.g. [9,31,36]). In order to characterize more quantita-
tively the microscopic relaxation processes, we apply the
same procedure as developed in [34] which allows one to
extract the spatio-temporal location of cage jumps (see the
“Methods” section at the end of this letter).
We also check that the non-trivial dynamics is fully

encoded in the cage jumps by quantifying the relaxation
of the system using the dynamical correlator:

Qp,t(a, τ) = exp

(

−
||∆�rp(t, t+ τ)||

2

2a2

)

, (1)

where ||∆�rp(t, t+ τ)|| is the absolute value of the
displacement of particle p between times t and t+ τ .
Averaging this quantity over all particles, one obtains

highest packing fraction, for which it does not interfere with the time

scales of the analysis.
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Fig. 2: (Color online) Spatio-temporal vizualisation of the cage
jumps in a time window of 1000 time steps at φ= 0.791. On
both plots each dot stands for a cage jump and color represents
the jumping time. Both plots are made with the same data.
Left: one spatial direction and time; right: the two spatial
directions. The dotted circle is the boundary of the region of
interest. Note that cage jumps aggregate in clusters that are
well separated in space and in time.

Qt = 〈Qp,t(a
∗, τ∗)〉p, where the time and length scales a

∗

and τ∗ are defined such that the dynamical heterogeneities
are maximal (see e.g. [33] for details on this procedure).
We compare the relative Qt/〈Qt〉t with Pt(τ

∗)/〈Pt〉t the
relative percentage of particles that have not jumped
during the same lag τ∗: fig. 1, bottom left, shows that
the correspondence is excellent, revealing that the bursts
of cage jumps localized by the algorithm are responsible
for the major relaxation events of the system. One can
also check that the cage jumps are exactly located in the
areas where the decorrelation is maximal (see e.g. fig. 1,
bottom right).

Spatio-temporal distribution of cage jumps. –

We find that cage jumps are not randomly distributed in
space and time but rather aggregate into cooperative clus-
ters (see fig. 2 for a spatio-temporal illustration and the
“Methods” section for an explicit definition of the clus-
ters). The very short duration of clusters, denoted τcl, is
small compared to all the other time scales of the dynam-
ics. These clusters can thus be considered as instantaneous
events. The number of particles involved in these coopera-
tive clusters is roughly power law distributed, with a cut-
off at the system’s size (see fig. 5, left). This observation
suggests that these elementary events of the dynamics do
not have a well-defined average size.
Subsequent clusters of cage jumps are not uniformly

distributed in space and time either, as suggested for
instance in fig. 2, right. Instead, our analysis reveals that
a cluster typically is followed nearby in space and in time
by another cluster. The aggregation of these events leads,
on a longer time scale, to structural relaxation. Clusters
are defined as adjacent in space if they are separated by
less than rth = 1.5 when projected on a single time frame.
Moreover, we record the lag times τ separating adjacent
clusters (see the “Methods” section for more details).
Figure 3, top, displays P (τ > τ1), the probability of
observing τ larger than τ1; these cumulated distributions

Fig. 3: (Color online) Time scales and their evolution with
the packing fraction. Left: distributions of τ , the lag time
between adjacent clusters; main plot: P (τ > τ1) —black dotted
lines are exponential fits at large τ1. Inset: Pdf(τ) for the
population of short lag times (see text for more details);
black lines are indicative exponential decays. Right: τcl ( ),
τcorr ( ), τfac ( ) and τ1/2 ( ), which is roughly τcage. Note
that τcorr > τcl, confirming that clusters are short, well-defined
dynamical events.

are well described by the addition of two processes:

P (τ > τ1) =
(

pcorre
−

τ1
τcorr +(1− pcorr)e

−
τ1

τcage

)

, (2)

where pcorr is the fraction of short lag times. The short
time scale τcorr physically reveals the existence of corre-
lated clusters and we observe that the long time scale
τcage corresponds to the average time spent in a cage.
We first extract τcage and pcorr by fitting the large
τ1 regime, then subtract the large τ1 contribution and
obtain the exponential distribution for the short lag times
—displayed in the inset of fig. 3, top left— and from which
one easily estimates τcorr. When τcage≫ τcorr, one can
also identify sets of correlated clusters adjacent in space
and in time. These sets, that we call avalanches, last for
a time τfac during which dynamical events correlate to
previous dynamical events nearby, which is a particular
way to construct dynamic heterogeneity, namely dynam-
ical facilitation. These important observations are qual-
itatively identical to those reported in [34] and confirm
the robustness of both the analysis and the physical
phenomena.

Towards the dynamical transition. – We now come
to the central discussion of this work: the evolution of the
above dynamical patterns, when the packing fraction is
increased towards the glass transition. One observes on
fig. 3, right, that the short duration τcl of the cooperative
clusters varies from 2 to 10 with the packing fraction, not
a significant variation given our temporal resolution on
the detection of the cage jumps. Also, τcorr does not vary
much, it remains bounded between 100 and 250 without
clear tendency. Instead, τfac decreases with φ while τcage
matches the structural relaxation time or its alternative
estimation τ1/2, the time needed for observing half the
particles jump once, which increases from 511 to 3041.
Let us now discuss the physical consequences of these

findings. Clearly, the picture of clusters dynamically
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Fig. 4: (Color online) Top: mobility patterns in space and time during the typical relaxation time τ1/2(φ) for 3 packing fractions:
from left to right φ= 0.780, 0.791, 0.802 and τ1/2 = 1540, 2250, 3730. The two directions of space are in the horizontal plane and
time is the vertical axis. The ratio τcorr/τ1/2 is given in the upper-right corners. Jumps are represented with black dots, and all
possible tetrahedrons, whose edges are the links between correlated jumps, are shown, forming volumes. Each separate connected
structure has a different color. Bottom: jumps occurring in τ1/2 (in grey), same packing fractions. The jumps belonging to one
arbitrarily chosen connected structure are colored according to the time at which they occur.

facilitating each others only makes sense when τcage is
larger than τcorr, that is above φ

∗ ∼ 0.77, which would be
analogous to the onset temperature in supercooled liquids.
The way in which clusters aggregate and the resulting
mobility patterns are represented in fig. 4, top, for three
packing fractions in 3D space/time, the time axis being
rescaled with respect to the relaxation time τ1/2. We draw
all cage jumps (black dots) and link all pairs of jumps that
are separated by less than τcorr in time and rth = 1.5 in
space. This defines a network whose vertices are the cage
jumps and whose edges are the orientated links between
correlated jumps.
For the loosest packing fraction, connected jumps

form a highly interconnected monolith: τfac≫ τ1/2 and
dynamical facilitation is conserved on time scales relevant
for structural relaxation. When raising φ, an increasing
number of adjacent clusters become separated by more
than a few τcorr within a time interval equal to the
relaxation time (τ1/2/τcorr ≃ τcage/τcorr increase up to
30). Concomitantly, τfac decreases, and becomes smaller
than τ1/2 for the largest φ. For this density, several
independent avalanches start and end within a time
interval of the order of the relaxation time scale and
facilitation is clearly not conserved anymore. We also find
that pcorr decreases from 90% to 40%, indicating that
avalanches are composed of a decreasing relative number

of clusters. The above observations suggest that at even
higher density τfac might become of the order of τcorr:
each avalanche would reduce to a single cluster.
The above evolution of the time scales strongly influ-

ences that of the associated length scales. The bottom
panel of fig. 4 displays the spatial projection of all cage
jumps during τ1/2. In grey, one sees all the particles which
have jumped, which correspond by definition to half of
the total number of particles. The jumps belonging to one
arbitrarily chosen avalanche are colored according to the
time at which they occur. The typical size of clusters ξcl
and the dynamical correlation length scale ξ1/2 are given
by the average width of the backbone forming the mobility
pattern over τcl and τ1/2, respectively, see the “Methods”
section for a description of how these length scales are
extracted. For the lowest φ (left panel) τfac > τ1/2 and
almost all cage jumps belong to the same large, eventu-
ally infinite connected structure. ξ1/2 is roughly the cluster
size, thus showing that the pattern is formed by dynami-
cally independent clusters. At higher φs, the distributions
of the cluster sizes nc (see fig. 5, left) have larger tails
and their experimental average 〈nc〉 grows from 3.4 to 5.
However the typical width of clusters backbones ξcl almost
does not vary with the packing fraction in the studied
regime, as shown in fig. 5, right. Instead, the dynamical
correlation length scale ξ1/2, increases sharply for larger
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Fig. 5: (Color online) Length scales as functions of the packing
fraction. Left: cumulated Pdf of the clusters’ number of
particles nc for the 6 packing fractions φ= 0.758 (red) to 0.802
(blue); Inset: mean value of nc over all clusters, as a function
of φ. Right: ξcl ( ), ξ1/2 ( ) and ξava ( ). Plain lines are guides
for the eyes, dashed lines are extrapolations.

φ. The natural interpretation is that until φ∗ the mobil-
ity pattern is so much intertwined that a cluster is facil-
itated by several others and dynamical correlations do
not propagate farther than the size of one single clus-
ter. For the packing fraction corresponding to the middle
panel of fig. 4, bottom, τfac ≃ τ1/2 and the dynamical
heterogeneities match the avalanches, hence ξ1/2 = ξava.
For the largest packing fraction the avalanche size seems to
decrease while ξ1/2 is still increasing. Note that it is really
the nature of the clusters aggregation which changes with
density. From a very much interwined structure at low
density, it evolves for large densities towards avalanches
well separated from each other and from the boundaries
of the observation volume. As a consequence, there is no
rescaling in space of these patterns.

Conclusion. – To summarize, analyzing data coming
from a fluidized monolayer experiment, we have confirmed
the predominant role of the spatio-temporal organiza-
tion of cage jumps in the relaxation dynamics previously
pointed out in our cyclic shear experiment, and revealed
its evolution with the packing fraction. Above a charac-
teristic packing fraction, akin to the onset temperature in
liquids, facilitation starts to play a role in the dynamics.
Then, increasing the packing fraction, mobility patterns
evolve from a single connected structure spanning the
experimental time to isolated denser avalanches of finite
size and duration. Dynamical correlations are, at first, of
the size of clusters and then, in the latter regime, of the
size of the avalanches. The cluster size increases with the
packing fraction whereas the number of correlated clusters
inside an avalanche decreases. Thus the cooperative relax-
ation of the first cluster of an avalanche plays a larger role
and facilitation a lesser one. Identifying the mechanisms
responsible for the dynamical heterogeneities at the largest
packing fractions and how avalanches appear/disappear,
as well as investigating whether the above findings also
hold for supercooled liquids would certainly be of great
interest.

Methods. – First, we describe how the cage jumps
locations in space and time are extracted from the individ-
ual dynamics. For that purpose, we introduce a measure
of the square distance separating two subsets of a given
trajectory:

∀t∈ [ti, tf ], p̃(t) =
√

〈d1(t2)2〉t2∈S2 .〈d2(t1)
2〉t1∈S1 ,

where ti and tf are the initial and final times of the
trajectory, S1 = {ti; t} and S2 = {t; tf} are the two subsets
of points before and after time t, di(tj) stands for the
Euclidian distance from the position at tj to the center
of mass of the subset Si, and 〈.〉tj∈Sj denotes an average
over the subset Sj . p̃(t) is therefore the product of the
root mean square distances between all the points of the
subsets to the barycenter of the other subset. In order
to have a well defined p̃(t), there must be enough points
in each subset to approximate the barycenter’s position
accurately, which is not true close to the bounds ti and tf ;
it is thus convenient to introduce p(t) = ξ(t).p̃(t) where

ξ(t) =
2[(tf−t)(t−ti)]

1/2

tf−ti
is a natural normalization of p̃(t),

which counterweights the lack of statistics in the subsets
defined close to the extremities of the trajectory. Then, the
cage jumps are identified by considering the dependence
of p(t) vs. t, which peaks at the time at which the centers
of mass are best separated, thereby identifying the cage
jumps. In the case where the motion entirely takes place
in a single cage, the barycenters of any two subsets remain
close to each other, leading to a roughly constant p̃(t)≃
σ2c , where σc is the typical size of the cage. Then, the
algorithm consists of an iterative procedure; initially the
whole trajectory is taken, and two “branches” are created
each time a jump is located, corresponding to the sub-
trajectories before and after the jump. A branch stops as
soon as no value of p(t) stands above the natural threshold
pth = σ

2
c , where σc is the length scale of the crossover

at which the root mean square displacement recovers a
diffusive regime (see fig. 1, top right). By construction pth
is the lower bound for the jump amplitudes.
The major advantage of the above algorithm is that

the duration of the jump does not come into play. Only
the separation of the cages determines the existence of a
jump, as it should be. In essence the robustness of this
algorithm comes from the fact that the cages are statis-
tically much better defined than the jumps. Note that
the case of two consecutive jumps in opposite direction is
not an issue for this algorithm because the average time
between consecutive jumps is orders of magnitude above
the jumping time itself. We have checked on artificial
trajectories mimicking the cage effect that the algorithm
is very close to detect all cage jumps perfectly: the number
of false-positive is roughly constant and around 1%. In
addition, the temporal location of the jumps is excellent:
the standard deviation of the lags between the real jumps
and their matches is always smaller than 4 time steps.
Second, we explain how clusters and avalanches are

defined and determined. Two cage jumps belong to the
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same cluster if they are separated in time by less than
a temporal threshold tth and distant from less than a
distance threshold rth. The temporal threshold tth is set
to be the 4 time steps resolution of the cage jumps
separation algorithm. Varying the distance threshold rth,
one observes a plateau in the dependance of the number
of clusters detected by the algorithm as a function of
rth. We select rth = 1.5 in the center of this plateau in
such a way that the output of the clusterizing procedure
is fairly robust. Avalanches (“clusters of clusters”) are
determined with the same two-thresholds procedure, the
time threshold being the correlation time τcorr while the
distance threshold remains the same as above.
We finally discuss how the different time and length

scales are computed. τcl is the average value of the clusters’
durations, i.e. the lags separating the first and last jumps
of a cluster. These lags are exponentially distributed.
τcage and τcorr are extracted by fitting the cumulated
distributions P (τ > τ1) with eq. (2). τ1/2 is the average
time needed so that half the particles in the region of
interest have jumped. τfac corresponds to the average
duration of the avalanches, i.e. the lags between the first
and the last cage jumps among all the clusters of an
avalanche. The length scales ξcl and ξava are extracted
from the projections of the corresponding spatio-temporal
objects onto the 2D spatial plane. The latter is divided
in pixels of lateral size dS/10, set to 1 if part of an
object projects on it and 0 otherwise. The lenght scales are
computed as the typical “width” of the pattern made of
the pixels set to 1. The “width” of such a pattern is defined
as the average length of the distinct segments made of
successive pixels inside the pattern. ξ1/2 is computed
the same way, the corresponding spatio-temporal pattern
being the ensemble of jumps occuring until half the system
has jumped at least once. ξcl, ξava and ξ1/2 are averaged
on all possible realizations of the corresponding patterns.
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