
The Glass and Jamming transitions in dense granular matter

Corentin Coulais∗, Raphaël Candelier† and Olivier Dauchot∗∗

∗SPHYNX/SPEC, CEA-Saclay, URA 2464 CNRS, 91 191 Gif-sur-Yvette, France
†UPMC Univ. Paris 06, FRE 3231, LJP, F-75005, Paris, France

∗∗EC2M/UMR 7083 Gulliver, ESPCI-ParisTech, 75005 Paris, France

Abstract. Everyday life tells us that matter acquires rigidity either when it cools down, like lava flows which turn into
solid rocks, or when it is compacted, like tablets simply formed by powder compression. As suggested by these examples,
solidification is not the sole privilege of crystals but also happens for disordered media such as glass formers, granular media,
foams, emulsions and colloidal suspensions. Fifteen years ago the “Jamming paradigm” emerged to encompass in a unique
framework the glass transition and the emergence of yield stress, two challenging issues in modern condensed matter physics.
One must realize how bold this proposal was, given that the glass transition is a finite temperature transition governing the
dynamical properties of supercooled liquids, while Jamming is essentially a zero temperature, zero external stress and purely
geometric transition which occurs when a given packing of particles reaches the maximum compression state above which
particles start to overlap. More recently, the observation of remarkable scaling properties on the approach to jamming led to
the conjecture that this zero temperature "critical point" could determine the properties of dense particle systems within a
region of the parameter space to be determined, which in principle could include thermal and stressed systems. Fifteen years
of intense theoretical and experimental work later, what have we learned about Jamming and glassy dynamics ? In this paper,
we discuss these issues in the light of the experiments we have been conducting with vibrated grains.
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INTRODUCTION

In a loose sense, Jamming describes all the situation-

s where an assembly of particles gets stuck in a disor-

dered configuration and stops flowing, ranging for in-

stance from silo clogging to traffic jams. In the late 90’s,

the Jamming paradigm – i.e. a unified description of the

onset of mechanical stability in divided matter – emerged

to encompass in an unique framework these phenome-

na [1]. The “Jamming diagram” [2] illustrates this idea

in the form of a Temperature-Density-Stress phase di-

agram of Jamming. This challenging proposal has been

the starting point for a fantastic number of theoretical and

experimental studies [3].

From a theoretical point of view, the simplest case of

athermal and frictionless soft spheres packings has been

extensively studied [4, 5, 6, 7] and now serves as a refer-

ence situation for which Jamming has a precise meaning:

the transition occurs when the system can not be com-

pressed further without allowing overlaps between parti-

cles. From that point of view, it is essentially a matter of

satisfying geometric constraints, and indeed, a formal i-

dentification with algorithmic has been established [8, 9].

For athermal systems the Jamming transition is intrinsi-

cally out-of-equilibrium, which requires to state precise-

ly the protocol used to prepare the system. Yet, many fea-

tures of the transition appear to be protocol independen-

t [10] and for a given protocol on an infinite system, the

Jamming transition is entirely controlled by the packing

fraction. The transition occurs at the so-called “point J”

and coincides with the onset of isostaticity [11], i.e. the

number of sterical and mechanical constraints imposed

at the contacts matches exactly the number of degrees of

freedom describing the particles. A number of geometri-

cal and mechanical quantities exhibit clear scaling laws

with the distance to jamming [3]. One prominent signa-

ture of jamming is the singular behavior of the average

number of contacts per particle z−zJ ∝ (φ −φJ)
α , where

zJ is equal to 2 times d, the space dimension, φJ is the

packing fraction at point J, and α ≃ 0.5 [4, 12]. The dis-

tribution of the gaps between particles displays a delta at

zero and a square root decay for increasing gaps, which

is the key to the singular behavior of the average contact

number [7, 13, 14, 15].

From a practical point of view, real systems always

include more complicated interactions such as friction

for dry grains or hydrodynamics interactions for suspen-

sions or foams. It is not clear a priori that one can safe-

ly neglect them. Still, careful experiments with photo-

elastic grains [12], emulsions [16, 17] and foams [18]

have demonstrated the relevance of point J to describe

their mechanical properties.

In addition, real systems that jam or unjam usually un-

dergo micro or macroscopic motion: either the particles

are small enough to be thermally agitated (e.g. colloidal

suspensions, micro-emulsions) or some external forc-

ing triggers mechanical vibrations (e.g. vibrated granu-

lar media, granular flows). A natural way to investigate
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the effect of dynamics close to point J is to re-consider

the case of soft spheres, but now in the presence of ther-

mal fluctuations [19]. In principle, this allows one to use

modern tools of equilibrium statistical physics. Howev-

er, one soon realizes that for the packing fractions of

interest, the system gets naturally dynamically arrested

in non-equilibrium glassy states. Hence, describing ther-

mal soft spheres in the vicinity of point J requires first

to handle the complexity of the glass state, a notoriously

difficult task. Within some approximations, this has been

achieved only recently for both soft spheres [6, 7] and

hard spheres [14, 20, 21]. This description recovers all

the observed scalings in temperature and packing frac-

tion but the square root singularity of the pair correlation

function when T = 0+ and φ = φ+
J . This discrepancy,

together with the onset of a diverging length in the vibra-

tional properties of the jammed state [22], suggest that

larger scale correlations must be taken into account.

Finally, the steep increase of the relaxation times as-

sociated with glassy behavior seriously hampers exper-

imental work [23, 24, 25, 26]: samples brought to the

high packing fractions of Jamming are deep into the

glass phase and are difficult to manipulate on reason-

able timescales. This difficulty can be dodged using p–

NIPAM micro-gel particles, which can be inflated by s-

lightly decreasing the temperature around the ambien-

t. Using this trick, one can flow the sample into the

observation cell and then increase the packing frac-

tion [27, 28]. Furthermore, choosing the range of particle

size and softness, one can in principle tune the relative

importance of Brownian motion as well as the ratio of

the thermal to the elastic energies when particles over-

lap. However the intrinsic difficulty remains: the time

scales for equilibration in a given metastable state be-

come prohibitively long as soon as one tries to approach

the T = 0+ limit. For athermal granular media, the situ-

ation is similar: they need some mechanical energy to be

maintained in a non-equilibrium steady-state (NESS). As

for thermal systems, this requires extremely slow com-

paction of the sample in order to avoid aging dynamics

on the experimental timescales [29, 30]. For that reason,

most granular experiments actually probe the glass tran-

sition and not the Jamming one [31, 32, 33].

In the following, we shall recast several experimen-

tal results to illustrate the above considerations. In the

first section, we describe the microscopic mechanisms at

play in granular systems approaching the glass transition

and emphasize the decreasing role of facilitation associ-

ated to the emergence of large-scale dynamical hetero-

geneities [34, 35, 36]. In the second section, we exper-

imentally study the vicinity of the Jamming transition

by investigating both statics and dynamics of the con-

tact network in a horizontally shaken bi-disperse pack-

ing of brass or photo-elastic discs. This packing was

first prepared in a granular glass state, namely a frozen

structure of vibrating grains, by very slow compression

while maintaining a mechanical excitation [37, 38]. We

conclude by comparing our observations with numerical

simulations of thermal frictionless soft spheres [19].

SPATIO-TEMPORAL ORGANIZATION

OF THE RELAXATION CLOSE TO THE

GLASS TRANSITION

In this section, we provide an overview of the mecha-

nisms at play during the appearance of large dynamical

heterogeneities close to the characteristic dynamical ar-

rest associated with the glass transition. Let us start at

the microscopic level and follow one single particle: a

typical trajectory rp(t) is shown on figure 1-left. The

particle performs localized, vibrational motion around

a metastable position, as in a disordered solid, forming

“cages” that are interrupted by rapid excursions called

“cage jumps”. Jumps are by definition irreversible, which

distinguishes them from ratling movements. The jump

lengths distribution is bell-shaped with a well-defined av-

erage value, which is only a small fraction of the particle

size. This suggests that jumping movements come from

cooperative events involving a potentially large number

of particles moving by a small amount. This observation

is at the root of the idea of cooperative motion and dy-

namical heterogeneities.

This immediately translates into the statistics of mo-

tion: the displacement distributions along an arbitrary di-

rection are composed of a central Gaussian part, corre-

sponding to the short time vibration, and large exponen-

tial tails associated with the rare jumping events. It is

remarkable that these distributions have the same struc-

ture over a broad lag time window, comprising the struc-

tural relaxation. The width of these distributions also re-

flects the existence of the cages: the mean square dis-

placements exhibit a sub-diffusive plateau at intermedi-

ate timescales [32]. Then, to quantify the relaxation of

the density field, one introduces:

Qp,t(τ) = exp

(

−
||∆⃗rp(t, t + τ)||2

2σ(τ)2

)

, (1)

where ∆⃗rp(t, t + τ) = r⃗p(t + τ)− r⃗p(t) is the displace-

ment of the particle p, between t and t + τ and σ(τ)2 =
⟨

||∆⃗rp(t, t + τ)||2
⟩

is the root mean square displacement

on a lag τ . The interpretation is straightforward: when a

particle p moves less (resp. more) than σ(τ) between t

and t + τ , Qp,t(τ) remains close to one (resp. decreases

to zero). Averaging this quantity over all particles, one

obtains Qt(τ) =
⟨

Qp,t(τ)
⟩

p
, which evaluates the overall

relaxation of the system between t and t + τ . Typically

the relaxation time τα is then given by ⟨Qt(τα)⟩t = 1/2.

Qt(τ) is a highly fluctuating quantity, the fluctuations of
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FIGURE 1. Left: Typical trajectory, composed of several
cage jumps. The experimental setup is a bi-dimensional flu-
idized bed of beads, the motion of which is excited by an up-
ward flow of air [32, 39]. Space units are in particle diameter.
Right: Spatial field of the local relaxation Qp,t(τ

∗). Particles
jumping between t and t+τ∗ are represented with black circles,
and lye preferentially in the moving areas. From [35].

which betray the heterogeneous character of the dynam-

ics, in a way analogous to the way fluctuations of magne-

tization indicate the proximity of the para-ferro magnetic

transition. However, in the present case, such fluctuation-

s depend on the timescale τ on which the relaxation is

evaluated, hence the name of dynamical heterogeneities.

These fluctuations are maximal for a given τ∗ of the same

order as τα .

Dynamical heterogeneities are a key characteristic

of glassy dynamics [40]. They were first proposed to

explain the stretched exponential relaxation of super-

cooled liquids. At low enough temperature or high e-

nough packing fraction, the dynamics becomes heteroge-

neous: domains of slow and fast relaxation coexist in real

space and slowly evolve on long time scales. The length-

scale associated with these heterogeneities suggests that

the slowing down of the dynamics is related to a col-

lective phenomenon, possibly to a true phase transition.

Many different possible origins of these heterogeneities

have been highlighted in the literature, e.g. dynamic fa-

cilitation [41], soft modes [42, 43], proximity to a mode

coupling transition [44, 45] and growing amorphous or-

der [46].

To gain insight on the microscopic origin of dynam-

ical heterogeneities, efforts have been made to localize

the cage jumps in space and time (see for instance the it-

erative algorithm introduced in [35]). Figure 1-right dis-

plays the spatial field of the local relaxation Qp,t(τ
∗) for

a cyclic shear granular experiments [31, 35] with, super-

posed on top of it, the location of the cage jumps that

have occurred between t and t + τ∗. The distribution in

space and time of these events is far from homogeneous,

and the left panel of figure 2 illustrates the differen-

t timescales involved during the relaxation process: first,

cage jumps form clusters in space which occur on a rela-

tively short time scale τcluster. The distribution of the lag

FIGURE 2. Left: Sketch of the spatio-temporal organization
of the cage jumps in a given region of space. Right: Spatial
location of cage jumps, showing how they facilitate each other
to form dynamical heterogeneities. From [35].

times separating two adjacent clusters can be described

by the superposition of two distributions: one for the long

times corresponding to the distribution of the time spen-

t by the particles in its cage τcage, and one for the short

delays between adjacent clusters τcorr. When the ratio of

these two timescales is large enough, the clusters form

well separated avalanches, whose spatial organization is

illustrated in the right panel of figure 2. One can see how

the clusters spread and build up a uncorrelated region.

This mechanism is a perfect illustration of facilitation: a

local relaxation has a very high probability of happening

nearby another relaxation after a certain time, which is

short compared to the macroscopic relaxation time but

large compared to the microscopic one. In the present

case, the avalanches have a finite duration: they are the

dynamical heterogeneities.

This scenario depends on the distance to the glass tran-

sition. Let us illustrate this in the case of the fluidized bed

experiment described in [39, 47]. The spatio-temporal fa-

cilitation patterns are represented on figure 3 for three

packing fractions, the time axis being rescaled with re-

spect to the relaxation time τα . We draw all cage jumps

(black dots) and link the ones separated by a lag time less

than τcorr. This defines a network whose vertices are the

cage jumps and whose edges are the orientated links to-

wards facilitated jumps. For the loosest packing fraction,

all jumps are connected with facilitation links and form

a highly interconnected monolith. Dynamical facilitation

is thus conserved on timescales relevant for structural re-

laxation. When raising the packing fraction, well-defined

avalanches emerge. Several independent avalanches start

and end within a time interval of the order of the relax-

ation timescale and dynamical facilitation is clearly not

conserved anymore. The above observations suggest that

at even higher density each avalanche would reduce to a

single cluster and that dynamical facilitation would dis-
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FIGURE 3. Facilitation patterns in space and time during the typical relaxation time τ1/2(φ) = τα (φ) for 3 packing fractions :
from left to right φ = 0.780, 0.791, 0.802. The two directions of space are in the horizontal plane and time is the vertical axis.
The ratio τS/τ1/2 is given in the upper-right corners. Jumps are represented with black dots, and all possible tetrahedrons which
edges are the facilitating links between jumps are shown, forming volumes. Each separate connected structure has a different color.
From [36].

appear completely.

To check that the above characterization of dynami-

cal heterogeneities is not restricted to granular packings,

we have performed the same analysis with simulated da-

ta of a supercooled liquid at equilibrium, namely a bi-

dimensional binary mixture of N = 5,760 particles en-

closed in a square box with periodic boundary condition-

s, interacting via purely repulsive non-additive potentials

of the form uab(r) = ε(σab/r)12. Once the timescales are

properly rescaled, the similarities with the granular me-

dia experiments are astonishing [34, 48].

DYNAMICAL AND STRUCTURAL

CROSSOVER IN THE VICINITY OF THE

JAMMING TRANSITION

We now come to the description of a granular system

which is brought to even higher packing fractions; it-

s structure is thus totally frozen. To obtain these dense

packings, the system has been prepared through a slow

compression protocol in the presence of vibrations [37].

The main difference with the preceeding section is that

the grains are free to vibrate in this frozen structure but

they can not escape their cage, at least on the experimen-

tal timescales. In this case, the most interesting part of

the dynamics lies in the contact network; it is naturally

quantified by an estimator for the relaxation of the con-

tact network between t and t+τ , similar to the one intro-

duced above to quantify the density relaxation:

Qz(t,τ) =
1

N
∑

i

Qz
p(t,τ), (2)

where Qz
p(t,τ) = Θ(2 − |δ zp(t,τ)|), with Θ(.) the

Heavyside function and δ zp(t,τ), the change in number

of contacts of grain p between t and t + τ . Figure 4-

left displays Qz(τ) = ⟨Qz(t,τ)⟩t for various packing

fractions, where⟨.⟩t denotes the time average. For the

largest packing fractions, Qz(τ) remains constant at

values above 0.93, indicating the absence of long-time

decorrelation of the contact network: once formed, the

contacts are established permanently. The sole decor-

relation occurs at very short times scales and comes

from the fast ratling dynamics of a minority of grains.

For lower packing fractions, long time relaxation sets

in and contacts rearrange. These two distinct behaviors

allow us to define a crossover packing fraction φ †. It

is indicated with a black dashed line on the right panel

of figure 4. This crossover also separates two different

regimes in the dependence of the average number of

contact with the packing fraction (see fig 4-right): below

φ †, the average number of contact z is roughly constant,

whereas it steeply increases above φ †.

10
1

10
2

10
3

10
4

0.7

0.8

0.9

1
Qz

τ
0.805 0.81 0.815 0.82

10
1

10
2

10
3

10
4

3

4

5
τ z

α

φ

z

FIGURE 4. Structural crossover at the contacts. Left: Struc-
ture factor of the neighborhood links Qz as a function of the
lag time τ . Color code spans from blue (low packing fractions)
to red (high packing fractions). The black line indicates the
crossover packing fraction φ †. Right: Relaxation time of the
contact network, τz

α (�, left axis), and average contact number
z (×, right axis) as functions of the packing fraction φ . The plain
red line is a fit of the form τz

α ∼ (φJ −φ)−2.0. The dashed line

indicates φ † = 0.8151. From [38].
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Interestingly, the dynamics of the contact network be-

low φ † exhibits strong fluctuations and dynamical het-

erogeneities, albeit of a different kind from the one de-

scribed in the previous section. Here the heterogeneities

are relative to the degrees of freedom describing the con-

tacts, not the position of the grains. To quantify such het-

erogeneities, one can compute the dynamical susceptibil-

ity (see [40]) which estimates the range of spatial corre-

lations in the dynamics of the contact network:

χz
4(τ) = N

Var(Qz(t,τ))

⟨Var(Qz
p(t,τ))⟩p

, (3)

where Var(.) denotes the variances sampled over time

and ⟨.⟩p denotes the average over the grains.

We have studied how the maximum χz
4
∗ of χz

4(τ) de-

pends on both the reduced packing fraction ε = (φ −
φ †)/φ † and the reduced vibration frequency γ = ( f −
f0)/ f0, where f0 is the minimal frequency requested to

inject energy into the packing (see figure 5). χz
4
∗ is non-

monotonic with respect to the reduced packing fraction,

and has a maximum value at a negative reduced packing

fraction ε∗. This points out the existence of a dynam-

ical crossover corresponding to a maximally collective

relaxation of the contact network at a packing fraction

lower than the structural crossover. Besides, when γ is

decreased one observes that (i) ε∗ vanishes, i.e. the loca-

tion of the dynamical crossover moves towards φ †, and

(ii) the magnitude of the maximum χz
4
∗ significantly in-

creases as 1/γ . Hence, we can safely conjecture that in

the limit of no effective mechanical excitation the struc-

tural and dynamical crossovers merge, while the length

scale associated with the dynamical crossover diverges.

This strongly suggests, as sketched on figure (6)-left, that

we have indeed probed the vicinity of a critical point,

which in the present case ought to be the Jamming tran-

sition at zero temperature.
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Unjammed

Glass
Jammed
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φ∗φK

al, 2012

T 

Shaken Grains 

(Lechenault et al.) 

Coulais et al.)  

FIGURE 6. Phase Diagram. Left: Sketch summarizing our
observations; φK(γ) is the expected glass transition, φ∗(γ)

and φ †(γ) are respectively the dynamical and the structural
crossover lines merging at point J. Right: Location in the pa-
rameter space of some of the existing colloidal experiments and
the present vibrated granular one (adapted from [19])

However, as already stated, the present granular sys-

tem unlike thermal systems is in an out-of-equilibrium

and mechanically driven state; and one must remain cau-

tious when comparing with packings of thermal soft

spheres. Recent numerical simulations [7, 19, 49, 50]

suggest that the similarities with thermal systems are

much stronger than one may have expected at first

sight. For instance, the structural crossover reported here

might be related to the finite temperature first-peak pair-

correlation maxima near the Jamming point reported

in [7, 28, 49]. More specifically, in [19] the authors re-

port an extensive study of the dynamics close to point J

in the temperature-density parameter space, which they

conclude by comparing with existing colloidal experi-

ments. To do so, they essentially use the Debye-Waller

factor, namely the size of the cage surrounding the parti-

cles, as a sensitive thermometer. They conclude that ex-

isting experiments with colloids are outside the scaling

regime of point J, which extends only to very small tem-

perature. In the present case, we can follow the same pro-

cedure to evaluate the kinetic energy in our system and

situate our experiments with respect to point J. Accord-

ing to their result, the experiment described here, as well

as those performed with much harder grains [37, 51] are

in a good position to have probed the dynamical criticali-

ty related to the jamming transition (see figure (6)-right).

DISCUSSION AND PERSPECTIVES

We have investigated dense, driven granular assemblies

in the vicinity of the Glass and the Jamming transitions

in various experimental setups. This work demonstrates

that the experimental challenges one could a priori ex-

pect to face with these far-from-equilibrium systems can

be overcome. Furthermore, the macroscopic particles can

be individually tracked and the contact network can be

29

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  134.157.132.18 On: Thu, 17 Nov 2016

08:35:00



inferred, which broadens the range of accessible time and

length scales.

Our study of the dynamics close to the glass transition

has revealed the role of the cage jumps as the elemen-

tary events of relaxations. Then, by a careful examination

of the spatial and temporal correlations, we could relate

the large space and time scales dynamical properties of

the system to that of these localized and quasi instanta-

neous excitations. This has shed new light on the role

of facilitation, when approaching the glass transition. A

first comparison with a model glass former shows strong

similarities. Work under progress will tell us whether the

above conclusion applies to this thermal system.

The examination of the contacts dynamics in the glass

phase has allowed us to identify two crossovers, one

structural and one dynamical. When the mechanical exci-

tation is reduced towards zero, the two crossovers merge,

while the length scale associated with the dynamical

crossover sharply increases. This is an important experi-

mental result which supports the critical nature of the ze-

ro temperature point J. Again, comparison with thermal

soft spheres are encouraging and tell us that the simplest

thermal model are relevant to describe a rather large class

of systems.

Yet, the microscopic details of each specific system

will come into play at some point. For instance, in the

experiments conducted with the photo-elastic discs, the

friction coefficient amongst the grains is typically µ =
0.7 and the careful reader will have noticed that the jam-

ming packing fractions reported here have a lower value

than those obtained for frictionless particles. Still our re-

sults demonstrate that in the dynamical regimes probed

by our experiments, friction does not seem to be a quali-

tatively relevant parameter. Understanding whether it im-

pacts the quantitative scaling properties close to point

J requires further studies, presumably numerical ones.

In addition, those who have performed experiment with

shaken grains know that convection eventually always

sets in, whatever the care taken to avoid it. Such convec-

tion is a low frequency mode by which NESS dissipate

energy and which is usually filtered out from the data.

Whether it interacts with the other modes of the dynam-

ics is an interesting open issue.

Finally, we have recently studied vibrated granular

media, albeit of a new kind: each grain is a disc with

a built in polar asymmetry, which enables them to move

quasi-balistically on a large persistence length [52, 53].

Alignment occurs during collisions as a result of self-

propulsion and hard core repulsion. Varying the ampli-

tude of the vibration, we have observed the onset of

large-scale collective motion and the existence of giant

number fluctuations. This experimental system is a real-

ization of what is now called active matter, a fascinat-

ing new emerging field of soft matter physics. Investigat-

ing how such systems behave at large packing fractions,

when steric constraints comes into play and slow down

the dynamics, has only just started to be investigated [54]

and will certainly attract a lot of attention in the near fu-

ture. For instance, one may simply wonder whether the

glass phase survive in such active systems.
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