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We mimic the mechanical response of touch mechanoreceptors by that of a gas cavity embedded in an elastic
semicylinder, as a fingertip analog. Using tribological experiments combined with optical imaging, we measure
the dynamics and deformation of the cavity as the semicylinder is put in static contact or slid against model rough
surfaces at constant normal force and velocity. We propose an elastic model to predict the cavity deformation
under normal load showing that membrane mechanical stresses are anisotropic and we discuss its possible
biological consequences. In friction experiments, we show that the cavity shape fluctuations allow for texture

discriminations.
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I. INTRODUCTION

Touch mechanoreceptors are neural cells embedded in the
dermis of mammals [1-3], implied in the sense of touch. In
humans, the density of mechanoreceptors is particularly high
around the fingertip regions and in the palm of the hand [4,5],
and enables an exquisite tactile sensitivity as we explore a
solid surface with our fingers, to probe its shape or roughness.
Upon application of contact stresses, the skin is deformed
and mechanical stresses are conveyed from the surface of
the skin to the embedded mechanoreceptors, which transform
mechanical signals into neural signals propagating toward
the central neural system. This mechanotransduction process
is performed, at the microscopic scale, by mechanosensitive
transmembrane proteins (such as the Piezo protein familly
[6-10]) inserted in the plasmic membrane of mechanorecep-
tors. The structure of these mechanosensitive proteins, and
as a consequence its ion permeability, depend on the mem-
brane stresses. Under a mechanical stress, an ion flow can be
triggered across the membrane, yielding to an electrical depo-
larization of the cell, this is the birth of an action potential.

The physiology of mechanoreceptors is well documented
[2] as well as their neural response, using microneurogra-
phy experiments [11,12]. In particular, two different classes
of mechanoreceptors have been identified [2]: Slowly adapt-
ing (SA) mechanoreceptors on the one hand, whose neural
response is triggered during the whole time duration of a
mechanical stimuli and fast adapting (FA) mechanoreceptors,
with a neural response that depends on the time variations of
the stimuli [13]. Even if the physiology and protein sequence
and structure of some mechanosensitive proteins have been re-
cently identified, it is yet not clear to state how they precisely
encode mechanical signals, and what sets microscopically
peculiar dynamical responses of FA mechanoreceptors. Even
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from a purely mechanical perspective, the way membrane
stresses are distributed (angularly and temporarily) during a
typical tactile exploration have not been measured nor mod-
eled much.

Prior to any neural filtering, there is indeed a first purely
mechanical filtering of the tactile information, performed by
the geometrical and mechanical properties of the tactile organ.
For instance, the presence of fingerprints (epidermal grooves
with a typical wavelength A) at the extremity of the fingers
modulates the subcutaneous stresses [14,15] at a temporal fre-
quency v/A, where v is the exploration velocity. In addition,
the resonance properties of the skin have been shown to partic-
ipate in tactile perception, by propagating mechanical stresses
on large distances and thus triggering more mechanoreceptors
response, even outside the finger/surface contact zone [16].
But beside these macroscopic mechanical filtering processes,
one may wonder how the mechanoreceptor structure itself, as
a cellular inclusion in the extracellular matrix, encode me-
chanical stresses; this is the purpose of this Letter.

In this work, we use a biomimetic approach and model the
mechanoreceptor by a gas cavity embedded in an elastomer
semicylinder, as a fingertip analog. We use optical imaging to
measure the dynamics and deformation of the cavity as the
finger is slid at constant velocity and normal force against a
model rough surface. We discuss how the roughness of the
surface is encoded in steady and fluctuating stresses at the
cavity surface.

II. ARTIFICIAL FINGER AND MECHANORECEPTOR

The biomimetic finger is an elastic semicylinder of
Poly(dimethylsiloxane) (PDMS) elastomer, using a 50/50%wt
mix of Sylgard 184 and Sylgard 527 (Dow Corning inc.). The
mix is vigorously stirred, degassed with first a centrifugation
phase (3500 rpm, 10 min) and then let in a vacuum cham-
ber for 30 min. This liquid PDMS mixture is placed in a
Plexiglas hemicylindrical mold [see Figs. 1(al)-1(a3), inner
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FIG. 1. (al)—(a3) Sketch of the artificial finger/mechanoreceptor fabrication. The unreacted PDMS mix is poured in a hemicylindrical
Plexiglas mold. An aqueous droplet (V =~ 0.5 uL) is placed near the cylinder apex. Upon reticulation of the PDMS in an oven, the aqueous
droplet evaporates and leaves a gas cavity in the elastic semicylinder. (a4) Macroscope side-view image of the PDMS semicylinder showing
the location of the cavity close to the apex. (b) Sketch of the experimental setup. (c) Z profile of the rough— surface, from profilometry
measurements (see the Supplemental Material [17]). (d), (e) Histogram of the asperity heights, to which the glue base plane height has been

subtracted, for the rough— (d) and the rough+ (e) samples.

radius R = 10 mm, inner height 7 = 10 mm, and length L =
10 mm). One droplet of deionized water (volume ~0.5 uL)
is carefully added to the mix with a micropipette, and po-
sitioned at the proximity of the cylinder apex. A plexiglas
coverslip is added at the flat top of the hemicylindrical mold
and the system is placed in an oven at 65°C for two hours
for PDMS crosslinking. During crosslinking, we observed
that the water of the droplet evaporates through the perme-
able PDMS rubber, yielding after unmolding a gas spherical
cavity of radius a = 224 £ 1um embedded in the PDMS elas-
tomer, at a position z & 1 mm from the cylinder apex [see
Fig. 1(a4)]. The semicylinder rectangular base is glued to a
plasma-cleaned glass plate using a few drops of PDMS which
are crosslinked for a few minutes. The glass plate is then
mounted on a tribological setup [see Fig. 1(b)] very similar to
the one used in [15]. Briefly, the glass plate holder is mounted
on two crossed dual cantilever beams (whose stiffnesses have
been independently measured). The deflections of the two
cantilevers are measured with two capacitive sensors, from
which normal F;, and tangential forces F; are deduced (range
0-2N), with measurement noises of about 50 mN and 10 mN,
respectively. The semicylinder apex is positioned over a rough
surface mounted on a manual Z translation stage (to indent
the finger) and a X/Y motorized stage (ICLS-200, Newport
inc.), allowing to slide the surface at constant velocity (v,
from 0.05 to 0.2 mm/s). We used two different rough sur-
faces. The less rough one (rough™) is made of poly(styrene)
microspheres (diameter d = 140 um) spread and glued on a
microscope glass slide, the surface of which has been spin
coated with epoxy glue [Fig. 1(c)]. The rougher one (rough™)
is made using polydisperse glass microspheres (d = from 125

to 600 um) glued the same way. The roughness of the rough
surface is measured using an optical profilometer (Zegage
Pro, Ametek inc, objective magnification x5) taking images
over few tens of locations in each sample (see details in the
Supplemental Material [17]), from which we extract asperity
height fields h(x, y). We found, respectively, mean (& rms)
asperity heights of 141 &+ 16 um for rough™ and 325 +142 um
for rough™ [see Figs. 1(d) and 1(e)]. Last, the cavity is imaged
in transmission with a monocular zoom lens equipped with a
PointGrey BlackFly S camera (1280x 1024 pix?) with a x5
magnification objective, yielding an image spatial resolution
of 1.7 um/pixel. The Young’s modulus E of the PDMS elas-
tomer was measured using two methods, first by measuring
the contact semiwidth e as a function of the normal force,
as the finger is indented against a smooth glass surface and
fitting the data with a Hertz contact model for an incompress-
ible body [18] [e = +/3F,R/(wLE), see Fig. 2], second by
fitting linearly the normal force/indentation (F;,/§) relation-
ship (inset of Fig. 2) to an approximate solution ' =~ 7 LE§/3
[19]. From an average of the two measurements, we obtain
E = 0.8 0.2 MPa, a value for PDMS mix in agreement with
the results obtained in [20].

II1. RESULTS

A. Static contact

We first performed static contact experiments, where the
apex of the finger is indented against a smooth glass plate,
at constant normal force [see a sketch on Fig. 3(a)]. Using
standard image analysis with a custom-made Matlab routine
(see the Supplemental Material [17]) we extract the centroid
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FIG. 2. Semiwidth of contact e as a function of the normal force.
The solid line is a fit by a Hertz cylinder/plane model (see text). Inset:
Normal force as a function of the cylinder indentation 8. The solid
line is a linear fit (see text).
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FIG. 3. (a) Sketch of the semicylinder in static normal contact
with a smooth plane. (b) Image of the cavity under a F = 2.5 N
normal load. The detected contour has been superimposed. (c) Sketch
of the undeformed (dotted line) and deformed (solid line) cavity,
from which we compute the radial displacement u,(0). (d) Static
radial displacement under normal load as a function of 6, for normal
force F, = 0.75 N (lower curve), F, = 1.5 N (middle curve), and
F, =3 N (upper curve). These curves have been shifted vertically
arbitrarily for sake of clarity. The datas are adjusted by u, = A +
UY cos (20 + ¢) (solid lines). (¢) Radial displacement amplitude UY
as a function of the normal force. The measurement noise of 1 um
is obtained from the standard deviation of U" of repeated out-of-
contact experiments. The solid line is a fit with Eq. (2).

(x¢, z.) and the contour of the cavity in polar coordinates
r(0, F,), from which we deduce the static radial displace-
ment u¥ (0, F,) = r(0, F,) — r(0, F, = 0) under normal load
[Figs. 2(b) and (c¢)]. From elastic models for a cavity included
in an incompressible elastic medium under a uniform com-
pressive load [21,22], one would expect

u,(0) ~ S0 [3 + S cos(20)].
In the present study, the cavity is subjected to the heteroge-
neous stress field generated by the Hertzian cylinder-on-plane
contact. However, as a first approach, we make the hypothesis
that the compressive stress is homogeneous in the vicinity of
the cavity and close to the value oy derived from the Hertz
theory. This assumption is supported by the relatively low
values of a/e ~ a/z ~ 0.2. Accordingly, the stress experi-
enced by the cavity at a height z from the apex of the cylinder
writes

ey

ZFYL . . F;I
o) = ———, yielding u, ~«

el l—l—i—i

@

where o = 2a/3+/1/3xRLE) and B = 727w LE /(3R) are two
constants. The experimental measurements of u, are well
adjusted by a cos (260 + ¢) function [see Fig. 3(d)], where
¢ ~ 1 /8 is a phase shift required to adjust the data, due to
the fact that the cavity is not perfectly located in the contact
symmetry plane [see Fig. 1(a4)]. By performing experiments
in which the cavity is tilted (data not shown), we indeed
found that the phase shift increases with the tilt angle. The
amplitude of the u, modulations under normal load, U,N , are
extracted from the standard deviation of the u,(6) curves, and
are plotted against the normal force on Fig. 3(e). The data are
reasonably well fitted with Eq. (2), with @ = 11 & 2 um/N'/?
and B = 1.9 £ 1N, the order of magnitude of which compares
to the theoretical values & ~ 24 um/N'/? and 8 = 0.8 N. The
cavity’s response sensitivity x to normal indentation can be
calculated from Eq. (2); it writes

1 /dUN o 2 1
X =- =——=——" 0
a\ dF, Jr o aJB 3mELz
The sensitivity is expected to scale as 1/z and to diverge as
the cavity’s location approaches the cylinder contact plane.

B. Frictional response

Second, we performed experiments where rough surfaces
are slid at a constant velocity v and constant normal force
against the semicylinder [see a sketch on Fig. 4(a)], while
measuring the friction force and the cavity deformations along
time. We measured, at each time step in the steady sliding
regime, the friction force, the centroid coordinates (x., z.) of
the cavity [see Fig. 4(e)] and its contour. In an attempt to
isolate the shear component of the cavity deformation, we
computed the radial displacement under friction force with
respect to the static normal load radial profile, uf 0, F,,t)=
r0, F,, F; #0) —r(0, F,, F; = 0) [see Fig. 4(b)]. We plot on
Fig. 4(c) examples of these radial displacements under shear.
Typically, the shear component induced by friction induces a
sinusoidal modulation which tends to oppose to the normal
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FIG. 4. (a) Sketch of the semicylinder in steady sliding against a plane rough surface, at constant velocity v and constant normal force F,,.
(b) Sketch of the unsheared (dotted line) and sheared (solid line) cavity, from which the radial displacement u}(6) is deduced. (c) Selection of
radial displacement u} () for the rough+ sample, at a given sliding distance (d = 7.33 mm), and for normal forces F, = 0.5N (lower curve),
F, = IN (middle curve), and F, = 2N (upper curve). (d) Time averaged friction force (F;) as a function of the normal force for the rough+
(upward triangles) and rough— (downward triangles) rough surfaces. Inset: friction force fluctuations (8F;) as a function of F,. The typical
radial displacement amplitude U;(¢) at time ¢ is obtained as /2 times the standard deviation of u}(6) over 6. (e) Example of the four measured
observables: (x., z., U7, in um) and F; in N as a function of the sliding distance for the case of the rough+ sample at F, = 1IN. (f) Time
fluctuations of U; (), denoted U} as a function of F;,. The dashed lines are guides for the eyes. Inset: time averaged Uf as a function of Fj,.

load induced deformation, with a radial expansion at the poles
and reduction at the equator. The typical amplitude of this
signal U is extracted.

For these four observables [x.(t), z.(t), F;(t), U,S )] we
computed their time average in the steady sliding regime and
their fluctuations (8x., 8z., 8 F;, (SUrS , respectively). The asso-
ciated measurement noises are estimated from out-of-contact
experiment (see the Supplemental Material [17]). As antici-
pated from the weak logarithmic dependence of the frictional
stress of PDMS on velocity [23,24] in the investigated velocity
range, we found that none of these observables depend on
the sliding velocity in the probed range (v from 0.05 to 0.2
mm/s, see the Supplemental Material [17]), indicating that the
process is quasistatic. We thus combined results at different
velocities.

In Fig. 4(d) we plot the time averaged friction force as a
function of the normal load, and observe a linear relation-
ship for both roughnesses. The dynamical friction coefficient
u = F,/F, is slightly higher for the rough— texture. However,
we found that the time fluctuations of the friction force §F;
[inset of Fig. 4(d)] are similar for both surfaces. We plot on
the inset of Fig. 4(f) the time average radial displacement
US as a function of F,. A linear relationship is obtained for
both rough samples, but here again, does not allow for texture
discrimination. On the contrary, we find that the time fluc-
tuations of U3 are capable of discriminating textures, being
threefold larger at F, = 2 N for the rough+4 sample than for
the rough— one [Fig. 4(f), main pannel]. Fluctuations or other
observables (z., x, and F,) are shown in Fig. 6 and discussed
in the Appendix below.

IV. DISCUSSION

Altogether, this work proposes a mechanical framework to
predict the elastic part of mechanoreceptor deformations upon
stereotypical tactile tasks. Is this simplified model applicable
to natural mechanoreceptors?

Natural mechanoreceptors are of various types and sizes
[2]: Merkel cells for instance are typically ~10 um in di-
ameter, while Pacinian corpuscles can reach 100 um—1 mm
[25,26]. The latter are thus comparable in size to our model
cavity (diameter ~400 um). In addition, these receptors are
typically located at depths of approximately hundreds of um
to 2 mm beneath the skin surface—also comparable to our
model configuration.

The typical membrane tensions y of eukaryotes cell typ-
ically lie around 1072 to 1 mN/m scale [27,28]. Taking a
typical value of E = 100 kPa for the Young’s modulus of
the human finger [29], one obtains an elastocapillary length
[30] l,c = y/E < 10 nm, which is extremely small with re-
spect to the mechanoreceptor diameter. This suggests that
elastic stresses are the dominant contribution in predicting
mechanoreceptor deformations, and cell surface tension can
be neglected at this scale.

Natural mechanoreceptors, however, embed a complex
biological aqueous content within a plasma membrane com-
posed of a lipid bilayer with various embedded proteins,
and are surrounded by a viscoelastic extracellular matrix.
To approach this complexity, we previously developed lipid
vesiclelike systems embedded in a hydrogel. In a recent pa-
per [31], we demonstrated how to create and trap a lipid
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FIG. 5. See also [31]. (a) Sketch of a pseudovesicle trapped in an agar gel. (b) Fluorescence image of the pseudovesicle, whose internal
aqueous phase is marked with a green fluorophore and the oil phase in red (scale bar 200 um). (c) Sketch of the plane/plane deformation setup.
(d) Fluorescence images of the pseudovesicle upon deformation. The scale bar is 400 um long. (¢) Radial deformation U} as a function of the
normal force, for gas cavities (red discs) a liquid cavities (green triangles) and pseudovesicle (blue stars). (f) Rescaled U /a as a function of

rescaled stress o /E.

pseudovesicle within an aqueous agar gel. The term pseu-
dovesicle refers to a lipid vesicle with an oily cap on top
[Figs. 5(a) and 5(b)]. The agar gel (Young’s modulus £ ~ 100
kPa) can be indented using a piston with a cross-sectional
area S [Figs. 5(c) and 5(d)], and its deformation u" can be
measured under a normal load in a plane-plane contact. In the
Supplemental Material of [31], we showed that the deforma-
tion of the pseudovesicle closely approximates that of a gas
cavity in a PDMS elastomer, as studied in the present work.
Notably, when the deformation U} is rescaled by the radius a
of the pseudovesicle (or cavity), and the applied compressive
stress 0 = F,/S is normalized by the Young’s modulus E,
the curves for different systems collapse onto a single trend
[Figs. 5(e) and 5(f)]. These results support the relevance of
our gas cavity model as a first-order approximation to describe
mechanoreceptor deformation, even in more biologically real-
istic contexts.

Using this elastic model under static normal load, we can
estimate the order of magnitude of the strain at the cavity
wall as € =~ In(1 + U, /a) ~ 0.02. This corresponds to a stress

9 ~ Eulr\’ /a ~ oy of the order of 10 kPa. For biological
mechanoreceptors, how much does the membrane tension
Ay increase upon contact? This can be estimated using the
typical area expansion modulus K ~ 100 mN/m of a cell
membrane [32,33]: Ay =K ATj“, with A the membrane area.
One can estimate Ay ~ KU?/a?> ~ K(‘;—")z, leading to Ay ~
1 mN/m—within the range of threshold tensions required to
activate mechanosensitive proteins [6,10].

Using this elastic model, we also found that the static
contact sensitivity x increases and diverges as the cavity
approaches the cylinder apex [Eq. (3)]. However, from a
biological perspective, a balance is likely required between
tactile sensitivity and structural integrity. Merkel corpuscles—
specialized touch mechanoreceptors for static contact—are
located approximately 1 mm beneath the skin, within dermal
papillae [1], just below the epidermis, which may act as a
protective layer.

Second, from Eq. (2), the anisotropic experimental radial
displacement U" leads to an anisotropic hoop stress opg:
compressive at the cavity equator and extensional at the poles.
This anisotropy is well known in geophysics to explain frac-
ture localization in pressurized rock cavities [34,35], but has
not been considered in the context of tactile perception. This
suggests that mechanosensitive proteins may have different
activation probabilities depending on their angular location.
Could protein distribution be anisotropic, e.g., concentrated
at the poles to enhance sensitivity? Alternatively, the density
may adapt dynamically to membrane curvature, via a negative
curvotaxislike mechanism, as observed for various membrane
proteins [36-39].

Finally, regarding texture discrimination, our findings
suggest that shape fluctuations—and consequently, stress
fluctuations—enable roughness detection of textured sur-
faces. This calls for mechanical models of cavities under
tangential/frictional forces. A first step is presented in the Sup-
plemental Material [17], where we analyze the cavity response
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FIG. 6. (a) Time-averaged x, displacement of the cavity centroid, X, as a function of the normal load. The lines are linear fits to the data. (b)
Standard deviation of z. displacement, 6z.. (¢) Standard deviation of x, displacement, dx.. (d) Normal force fluctuation §F, as a function of the
normal load. (e) Time traces of the z. displacement (orange, right scale) and U (purple, left scale). The signal averages have been substracted.
(f) Normalized power spectrum of z. and US as a function of the normalized wave vector gd, d being the averaged particle diameter, for
the rough+ sample, at F,=0.5 N. (g) Same for the rough— sample. (h) Power spectrum of the deformation US for different normal load, for

rough+ sample. Inset: spectrum of z,.

to the passage of a single surface defect. From a biological
perspective, this gives a mechanical rationale for the existence
of fast adapting mechanoreceptors, whose neural response is
tuned to stress fluctuations.

APPENDIX: FLUCTUATIONS AND POWER SPECTRUMS

In Figs. 6(a) and 6(c) we have plotted the average and
standard deviation of the x, position as a function of the
normal load, for both textures. We observe that the time-
averaged x, increase quasilinearly with the normal force, with
a slope, respectively, of 380 um/N (resp. 205 um/N) for the
rough— (rough+) surface, allowing to discriminate both tex-
tures. Noticeably, the magnitude of the time averaged lateral
displacement x, of the cavity is correlated to the magnitude of
the friction forces reported in Fig. 4(d). Conversely, the fluctu-
ations of x, on the contrary are not good texture discriminants.
In the transverse Z direction, fluctuations 8z, are separated
for rough— and rough+ samples. Typically, values of dz.
are larger in amplitude than U5 fluctuations [Fig. 4(f)] but
increase more moderately with the normal load. Finally, let

us note that the normal force fluctuations are not statistically
different for the different textures [Fig. 6(d)].

What are the differences between the 8z, and the US
fluctuations? In Fig. 6(e) we plot time traces of z.(v.r) and
U5 (v.t). Typically, the z. signal shows more large wavelength
fluctuations than U?. This can be better evidenced by looking
at the power spectrum of z. and U? fluctuations, as plotted in
Figs. 6(f) (rough+) and 6(g) (rough—), as a function of the
normalized wave vector g.d, d being the particle diameter.
Note that these spectrum have been normalized by the vari-
ance of the corresponding signal, to cancel their amplitude
differences. The z. spectrum are found to decay as g~> over
the whole wave vector range. The US spectrum is quite com-
parable at low wave vectors, but present an excess of noise
density at larger wave vectors, with a crossover at g.d ~ 1. It
suggests that shape fluctuations are more sensitive to shorter
length scale, close to the particle roughness length scale.
We also found that the shape fluctuation spectrum is more
sensitive to normal force variations than position fluctuations
[Fig. 6(h)], since different spectra at different normal forces
are more separated.
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