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Kernel overlaps Useful for assessing temporal uncertainty and for kernel estimation
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Boundary term The estimation of the kernel involves the computation of the following boundary term:
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Kernel overlaps for super-resolution Useful for assessing temporal uncertainty and for kernel estimation
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In particular:
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Boundary-term for super-resolution
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Annex G: Heterogeneity in rise and decay time constants in Zebrafish

Application of BSD to zebrafish data yields heterogeneous distributions of rise and decay times. This means that
different regions show different patterns of fluorescence bursts. We see that the heterogeneities have a spatial structure:
in particular neurons in X tend to have longer time constants, whereas neurons in have shorter time constants. The
two possible explanations are that the spike patterns are different in these regions (e.g., regular vs sparse spike trains),
and/or that the expression of GCaMP is significatively different. Overall, they motivate the use of heterogeneous
time constants.

FIG. 8: (a) Distribution of rise and decay time. (b) Mapping of rise and decay time across a neurons
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