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Sensorimotor computation underlying phototaxis
in zebrafish
Sébastien Wolf1,2, Alexis M. Dubreuil3, Tommaso Bertoni1,2, Urs Lucas Böhm 4,5,6,7, Volker Bormuth1,2,
Raphaël Candelier1,2, Sophia Karpenko1,2, David G.C. Hildebrand 8,9,11, Isaac H. Bianco10, Rémi Monasson3
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Animals continuously gather sensory cues to move towards favourable environments.

Efficient goal-directed navigation requires sensory perception and motor commands to be

intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in

the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays,

volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the

neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients

towards a light source. Key to this process is a self-oscillating hindbrain population (HBO)

that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-

bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to

visual inputs varies with the motor context, a mechanism that manifests itself in the phase-

locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces

our observations and demonstrates how this sensorimotor processing eventually biases the

animal trajectory towards bright regions.
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To survive and thrive, motile organisms use sensory cues to
navigate towards environments where they are more likely
to avoid predators, obtain food or find mates. Efficient

goal-directed locomotion requires closed-loop coordination
between motor action and sensory perception. Each movement
induces a new sensory signal, which in turn modulates the
forthcoming motor output. This mechanism is at play in a
number of goal-directed behaviours, in organisms ranging from
bacteria1 to nematodes2, 3 and insects4, 5, but also among
humans6. Numerous models have been proposed to account
for this complex-coordinated motion, but to date no data are
available to understand how these behavioural strategies might be
implemented at the circuit level in the vertebrate brain.

Here, we take advantage of the accessibility of zebrafish larvae
to whole-brain imaging7–9 to investigate the neural sensorimotor
computation underlying phototaxis. This behaviour, which drives
the animal towards illuminated regions, is already present at
5 days post-fertilisation and is thus likely to be hard-wired in the
larval brain10–12. To obtain information regarding the direction
of a light source, larvae use two complementary strategies: stereo-

visual comparison12 and spatio-temporal sampling13. The first
mode relies on the difference in instantaneous perceived intensity
at two different angles to infer the direction of the source. In the
second mode, the illumination spatial gradient is extracted
from two successive samplings obtained before and after a
gaze-reorienting movement. This latter approach requires that
the visual and motor information are integrated in a timely
fashion.

We thus postulated the existence of a central neural circuit that
would drive spontaneous gaze shift while integrating unilateral
and bilateral changes in illumination so as to bias reorienting
bouts towards a light source. We first establish, through
behavioural assays, that the gaze and turning-bout orientations
are robustly coordinated, and that the statistics of gaze orienta-
tion are biased towards illuminated regions. We then use
volumetric functional imaging and optogenetic activation to
identify a bilaterally distributed neuronal ensemble in the rostral
hindbrain that appears to be a strong candidate for the control
of spontaneous gaze dynamics. We further investigate how the
self-oscillatory dynamics of this population are modulated by
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Fig. 1 Behavioural assays of ocular-saccade–turning-bout coordination and light-induced gaze bias. a Definition of the eye and tail kinematic parameters.
The larva’s tail and eyes are free. The gaze angle, θgaze, is defined as the mean orientation of both eyes. The parameter m characterises the instantaneous
tail deflection (Supplementary Methods). b–d Gaze dynamics. b Example time-traces of the eye and gaze angles. c Probability distribution function (PDF)
of the gaze angle, normalised by its characteristic range (Supplementary Methods), for one fish (solid line) and for N= 29 fish (dashed line). d PDF of the
delay τ between successive reorienting saccades for one fish. e–i Ocular-saccade–tail-beat coordination. e Gaze angle and tail deflection signals. f Individual
tail-beats turning score M, defined as the integral of m(t) over the swim-bout (Supplementary Methods), vs. the normalised gaze angle g (3681 tail-beats,
N= 11 fish). g Histograms of M for leftward (red) and rightward (blue) gaze orientation. The central part of the distribution (standard deviation σ) is used
to assess the significance of the tail-bout orientational bias. h Conditional probability of the gaze to be orientated to the left (red) or right (blue) given the
tail-beat turning scoreM (3681 tail-beats, N= 11 fish). The shaded region corresponds to the s.e.m. i Mean peri-saccadic tail deflection signal averaged over
leftward (blue) and rightward (red) saccades. j, k Stereo-visual phototaxis. j Scheme of the experimental assay. k PDF of the normalised gaze during periods
of unilateral stimulation for animals displaying positive phototaxis (N= 18 fish). Red and blue curves correspond to illumination on the left and right eye,
respectively. Dashed curve indicates bilaterally symmetric illumination. l,m Spatio-temporal gaze phototaxis. l Scheme of the virtual-reality assay. The fish is
submitted to a uniform illumination whose intensity is driven in real-time by the animal’s gaze angle. m PDF of the normalised gaze angle for virtual
leftward (red) and rightward (blue) illumination (N= 13 fish). The dashed curve corresponds to the neutral runs (constant illumination)
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bilateral and unilateral changes in illumination. Finally,
we develop a rate model of this circuit that reproduces most
of our observations and provides the first comprehensive
description of how phototaxis can be implemented in the
vertebrate brain.

Results
Visually induced modulation of gaze shift dynamics. Larvae can
redirect their gaze by triggering coherent angular excursions of
both eyes—a process called a saccade—or through whole-body
reorientation. We examined the endogenous temporal structure
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of both processes by monitoring tail deflections and eye orien-
tations in the absence of visual cues in larvae partially restrained
in agarose. Spontaneous ocular saccades in zebrafish larvae are
highly stereotyped (Fig. 1a–d; Supplementary Fig. 1), with a
quasi-periodic alternation between leftward and rightward
gaze periods. This property is reflected by the quasi-bimodal
distribution of gaze orientations and a distribution of delays
between successive reorientations peaked at ~12 s (12.2± 3.5 s,
mean± std, N= 29). The orientations of the gaze and the turning
bouts were found to be strongly correlated (Fig. 1e–i; Supple-
mentary Fig. 1 and Supplementary Movie 1). We observed that
over 85% of the tail-beats that could be unequivocally classified as
an attempted turning bout were oriented in the direction of the
gaze. Moreover, a large fraction (60.2%) of these bouts occurred
within the first second following the onset of an ipsiversive
saccade. This coordination mechanism was true for both large-
amplitude reorienting saccades that drove the right–left
alternation of gaze direction, and for low-amplitude secondary
saccades that maintained the gaze to the right or to the left by
compensating for slow ocular drift (Supplementarty Fig. 1d–g).

These observations suggest that a unique command circuit may
drive ocular saccades and set the direction of successive tail-beats,
such that the gaze sequence may be viewed as a proxy for fish
reorienting dynamics. We thus posited that phototaxis should
manifest as a bias in the animal gaze-angle distribution towards
illuminated regions. We tested this hypothesis by replicating, in
agarose-restrained animals, two visual stimulation protocols
known to evoke phototaxis in freely swimming larvae while
monitoring gaze dynamics12, 13. Visual stimulation was obtained
by projecting two LEDs onto a screen below the animal, each
delivering uniform illumination to one eye’s field of view
(Supplementary Methods).

We first submitted the larva to a 1 min period of whole-field
(bilateral) illumination followed by a step decrement of the
intensity to one eye, whereas illumination to the other eye was
held constant (Fig. 1j; Supplementary Fig. 2). The unilateral
illumination period was maintained for 30 s, and the sequence
was then repeated. In 67% of the fish (18 of 27), we observed that
the gaze orientation was significantly biased towards the more
illuminated side during unilateral illumination periods (Fig. 1k).
This process was reflected in the trial-averaged post-extinction
gaze sequence, which exhibited a transient drift toward the
illuminated region (Supplementary Fig. 2f). This bias was
associated with a 27± 3.4% (mean± std) increase in fixation
time towards the illuminated area. In total, a significant
phototactic behaviour was observed in 77% of the fish, yet 10%
displayed negative phototaxis, in accord with the experiments
performed in freely swimming configurations12. We confirmed
that, owing to gaze–tail coordination, this light-induced gaze bias
resulted in a turning bias of the animal toward the light by

performing similar experiments while simultaneously monitoring
both the eyes and tail movements (Supplementary Fig. 2k–m).

In a second approach, we developed a virtual-reality phototaxis
assay in which the animal had access to spatial cues through
spatio-temporal probing only. Both eyes were exposed to
the same whole-field illumination at an intensity that was locked
in real-time to the gaze orientation (Fig. 1l; Supplementary
Fig. 2i–j). The illumination was thus at its maximum when the
gaze was oriented to one side, and at its minimum for the other
side. A significant light-induced bias of the gaze orientation was
observed in 85% of the fish (p< 0.05, N= 11 of 13).
All responsive larvae showed an increased fixation time towards
the brighter direction, consistent with a positive phototactic
behaviour (Fig. 1m).

In both assays, the imposed spatial light gradient did not
trigger a systematic and immediate gaze shift. Instead, it induced
a statistical bias of the spontaneous saccadic dynamics whose net
result was to increase the relative duration of gaze fixations
towards the brightest region.

Functional mapping of gaze-tuned neuronal populations.
These observations suggested that the saccadic dynamics play a
central role in phototaxis by enabling a sequential sampling of
illumination gradients through spontaneous gaze shifts, while
driving the reorienting dynamics via gaze–tail coordination. We
thus sought to identify the saccade command circuit. Ocular
saccades in zebrafish have been studied mostly as a model of
neural integration14–16. The accessibility of this vertebrate model
to optogenetic techniques allows one to examine with unmatched
precision how a transient neural command that rapidly brings the
eyes into a desired position can be transformed into a sustained
signal to maintain a fixed eye position17. However, in contrast
with mammals18, the upstream command circuit that drives the
rhythmic alternation between leftward and rightward saccades in
zebrafish remains elusive19.

Our approach to identify the saccade command neuronal
population consisted of recording large fractions of the brain
using light-sheet functional imaging in animals expressing
calcium reporter in nearly every neuron (Tg(elavl3:GCaMP6f))
while monitoring eye dynamics (Fig. 2a; Supplementary Movie 2).
We restricted our analysis to the hindbrain and the caudal
midbrain, where saccade-induced distortions of the brain tissues
remained small enough to enable consistent signal extraction.
We implemented a multilinear regression approach to classify
individual voxels based on their tuning with respect to the
angular position and velocity signals of the eyes20 (Supplementary
Methods). We then applied a non-rigid registration method
to align these functional maps onto a single reference brain
obtained by averaging four different samples imaged using the

Fig. 2 Regression-based identification of gaze-tuned neuronal populations. a Schematic of the experimental setup and regression analysis. Volumetric
recordings on GCaMP6f-expressing larvae were performed using one-photon light-sheet imaging (20 sections per stack, 1 stack per second) while
monitoring saccadic dynamics. Voxel-by-voxel regression with the eye orientation signals were used to produce position-tuned and velocity-tuned 3D
maps. Notice that the two maps overlap in a small subset of voxels (the two 3D maps are displayed separately in Supplementary Movie 3). b, c Dorso-
ventral projection view and sagittal sections along two planes of the 3D functional map (mean over 7 fish) showing neuronal populations whose activity is
tuned to the gaze orientation (blue and red) and to the gaze angular velocity (green and yellow). The voxel colour encodes the Z-score values obtained
through multilinear regression (Supplementary Methods). Te, telencephalon; OT, optic tectum; Cb, cerebellum; Hb, hindbrain; RH, rhombomere. The grey
dotted rectangle indicates the effective recorded volume. d Coronal sections along the dotted lines shown in (c) for one sample of the four regions delineated
in (b). Region 1 encompasses the saccade generator burst neurons (SGBN); region 2 is the velocity-position neural integrator (VPNI); region 3 and 4
constitute the newly identified gaze-tuned rostral hindbrain population. It consists of four bilaterally symmetric clusters tuned to the ipsiversive gaze
orientation (region 3) and 2 more rostral clusters tuned to the contraversive gaze angle (region 4). e Example ΔF/F time-traces for these four regions. The
red and yellow (respectively blue and green) traces correspond to the sub-populations tuned to leftward (respectively rightward) gaze orientation. The grey
lines are the gaze angle traces (−θgaze: solid line, θgaze: dashed line). f Corresponding mean peri-saccade ΔF/F signals, computed over the leftward (red) and
rightward (blue) saccades. Grey lines are peri-saccadic signals for individual saccades
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one-photon light-sheet microscope at high spatial resolution.
A zebrafish brain atlas21 was finally used to anatomically
localise the various neuronal clusters that displayed robust tuning
with the gaze position and velocity (Fig. 2b, c; Supplementary
Movie 3).

The most prominent velocity-tuned neuronal assemblies
were located in two bilaterally symmetric clusters in rhombo-
meres 4–6 (rh 4–6, Fig. 2d–f, region 1). These populations
correspond to the previously identified saccade generator burst
neurons22 (SGBN). Each lateral cluster triggers ipsiversive
saccades through direct activation of two oculomotor nuclei
(abducens and oculomotor nucleus III). Position-tuned neurons

were found in the caudal hindbrain in a region consistent with
the previously described velocity-position neural integrator20

(VPNI, Fig. 2d–f, region 2). These analysis allowed us to further
discover the existence of position-tuned clusters in the rostral
hindbrain (rh 2–3) in the form of four stripes bilaterally
distributed on each side of the midline (Fig. 2d–f, region 3).
These clusters systematically displayed increased and prolonged
activity after every ipsiversive saccade, whether reorienting or
secondary (Supplementary Fig. 3). We also found two symmetric
clusters, lying at the rostral border of the hindbrain (rh 1) ventral
to the cerebellum, that were strongly correlated with contra-
versive gaze orientation (Fig. 2d–f, region 4). Notice that the
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same gaze-tuned neuronal clusters in the rostral hindbrain were
independently identified by Alex Ramirez and Emre Aksay in a
yet unpublished study.

Identifying a putative saccade command circuit. The
morphology and anatomical location of this newly identified
gaze-tuned ensemble in the rostral hindbrain (the four stripes
located in rh 2–3) appeared very similar to the self-oscillating
circuit identified by Ahrens et al. in eyes-fixed experiments based
on activity correlation analysis23 (the so-called hindbrain oscil-
lator, or HBO). Consistent with these findings, we observed that
this particular neuronal population displayed sustained antiphasic
dynamics, with each side activated in alternation, in recordings
where the saccades were abolished through eye fixation in agar
(Fig. 3a–g). To properly delineate the neuronal population
engaged in these self-generated oscillations, which we refer to as
the HBO, we first approximated the oscillatory signal using a
small subset of neurons and then computed the tuning of
each voxel to this reference trace (Supplementary Methods;
Supplementary Fig. 4). This functional criterion yields a neuronal
map that essentially encompasses the gaze-tuned circuit in rh 1-3
as formerly identified through regression with the gaze signal
(Fig. 3a, b; Supplementary Fig. 5). In more caudal regions of the
hindbrain (SGBN and VPNI areas, rh4-7), a small number of
neurons also participated in these self-oscillatory dynamics.
We analysed the temporal structure of the HBO’s endogenous
oscillations in eye-fixed conditions by running the Hilbert
transform on the differential signal (left minus right circuit
activity, Fig. 3e–g). We found the period distribution to be peaked
at ~20 s (19.9± 4.8 s mean± std, N= 8 fish), i.e. close to the
spontaneous saccadic period.

The quasi-periodic nature of the saccadic dynamics suggests the
existence of a circuit, akin to a central pattern generator, capable
of maintaining oscillations with a period on the order of 20 s in
the absence of rhythmic sensory or proprioceptive inputs. The
HBO constitutes the best candidate for this saccade command
circuit. This putative role was found to be consistent with
optogenetic assays using larvae expressing ChR2 pan-neurally
(Fig. 3h–l; Supplementary Fig. 6). We delivered series of
2.75 s-long light pulses over 47 × 57 μm2 brain areas, alternately
on either side of the midline with a 18 s period (one pulse every
9 s), while monitoring saccades (Fig. 3j). Each pair of bilaterally
symmetric regions was tested five times before the targeted regions
were relocated to eventually probe a large fraction of the hindbrain
encompassing both the HBO and the SGBN. As previously
reported22, activation of the SGBN (rh 4–6) consistently entrained
the saccadic dynamics (8 fish of 19, see Supplementary Methods

for details on the quantification of the response). For these
responsive fish, activation of the hindbrain in the rh 2–3 region
evoked ipsiversive saccades with comparable efficiency (Fig. 3l).
These responses could not result from direct activation of the
oculomotor nuclei, which lie immediately rostral to rh 1 but drive
contraversive saccades. In contrast, optogenetic activation of the
two most rostral regions of the oscillator, located in rh 1, failed to
evoke conjugated saccades, which might indicate that these two
assemblies lie downstream of the HBO’s gaze-driving neurons.
Finally, a small area in the caudal midbrain was found to trigger
ipsiversive saccades in two larvae.

Careful examination of the functional imaging data in eyes-free
preparations offers hints regarding a putative connectivity
map between the HBO and the SGBN. We identified two small
clusters in rh 7 systematically activated 2–3 s prior to the saccade
onset (Supplementary Fig. 3a–c), which are thus analogous to the
so-called long-lead burst neurons in the mammalian saccadic
circuit24. Such a functional trait can be understood within the
assumption that they receive inhibitory inputs from the
contralateral HBO circuit, whose spike-rate consistently decays
before the saccade onset. In contrast, the ipsilateral HBO
circuit remained silent until the saccade onset, which precludes
the possibility that it drives, via excitatory inputs, these long-lead
burst neurons. Our observations further indicate that the HBO
may receive ascending ipsilateral signals from saccadic pre-motor
centres (efference copy). When two successive saccades occurred
in the same direction, the second one was systematically followed
by a rebound of the HBO active module (Supplementary Fig. 3d,
e). This process cannot result from the reciprocal inhibitory
coupling with the contralateral HBO module25, as the latter
remains silent during such phases. Although more work will be
needed to definitely establish that the HBO drives spontaneous
saccades, these various observations suggest a neural architecture
of the saccadic command circuit as sketched in Supplementary
Fig. 3f.

The hindbrain oscillator responds to visual stimuli.
Dunn et al.25 recently reported that the HBO left and right activity
biased the orientation of fictive turning bouts to the right and the
left, respectively. This finding is in line with our hypothesis that a
unique command circuit controls both turning-bout orientation
and spontaneous ocular saccades. The resulting gaze–tail coordi-
nation process, analogous to the well-documented head–eye
coordination in vertebrates26, 27, explains why the orientation of
successive turning bouts exhibits a ~10 s autocorrelation decay in
freely swimming larvae13, as this value corresponds to the typical
period between successive reorienting saccades.

Fig. 3 Self-oscillatory dynamics and optogenetically evoked saccades. a Dorso-ventral projection of the gaze-tuned (top-half, N= 7 fish) and self-oscillatory
hindbrain population (bottom-half, N= 8 eye-fixed fish). In the latter, the colour encodes tuning to the left (red) and right (blue) pre-selected neuronal
clusters, revealing strong antiphasic activity (Supplementary Methods). The two functional maps were registered on the same reference brain to enable
side-by-side comparison. The rectangle indicates the region of the rostral hindbrain gaze-tuned population. b Coronal sections of the self-oscillatory
population along the dotted lines in the projected view. c Pearson correlation matrix of the neurons engaged in the self-oscillatory dynamics (616 neurons).
The matrix was reordered to reveal two highly correlated (and reciprocally anti-correlated) clusters. d Activity of the left vs. right populations (r= −0.43).
e Example ΔF/F traces of the left and right groups (top), and of the differential signal (bottom). The grey dotted line shows cos(φ(t))), where φ(t) is the
oscillatory phase extracted using Hilbert’s transform. f ΔF/F of the right (blue) and left (red) circuits as a function of the oscillatory phase. The blue and red
lines correspond to the mean values. g PDF of the instantaneous oscillation period. h–k Optogenetic activation of ocular saccades. h Schematic of the
optogenetic stimulation protocol. i Top: projective view of the previously mapped gaze-tuned regions. Bottom: Z-score map of saccadic entrainment by
optogenetic activation averaged over 8 fish (Supplementary Methods). j Mean peri-stimulation normalised gaze signal for three regions: the rostral HBO
(rh 2–3), the SGBN (rh 5), a control region (rh 7). The responses of four different fish are shown, and the associated targeted areas are indicated in (i). The
2.75 s-long stimulation periods are indicated by the grey area. k Example gaze signals upon periodic left or right optogenetic stimulation for two region pairs
in rh 2–3 and rh 5. l Profile plot of the mean optogenetic Z-score along the rostro-caudal axis (black), overlaid on the ipsiversive (red) and contraversive
(blue) gaze-tuned Z-score yellow curve indicates the ipsiversive velocity-tuned Z-score. Ipsiversive saccades are evoked with comparable efficiency by
targeting the SGBN (rh 5) or the rostral HBO (rh 2–3)
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To evaluate the HBO’s putative role in driving the phototactic
behaviour, we sought to investigate whether its endogenous
dynamics could be visually biased. We thus successively probed
its response to asymmetric (unilateral illumination of one eye)
and symmetric (similar illumination on both eyes) visual stimuli
(Fig. 4). To prevent visual perturbations by the light-sheet, these
experiments were carried out using two-photon excitation, i.e.
with an infrared source that is invisible to the fish28. In a first
series of experiments, we alternately illuminated each eye for 15 s
while performing brain-wide functional imaging. The associated
response maps indicated that the most prominent visually
sensitive clusters in the hindbrain corresponded to the HBO

(Fig. 4b–f; Supplementary Fig. 5b). The right HBO, whose activity
is associated with a rightward reorienting bias, was activated
when the right eye was stimulated, and vice-versa. These
unilateral visual responses are consistent with a stereo-visual
positive phototaxis mechanism. In 1 of 11 fish, however, we found
a reverse response, i.e. the visual stimulation elicited activity in
the contralateral HBO. This observation parallels, and may
explain, the 10% of fish found to display negative phototaxis in
the behavioural assays.

Phototaxis has been shown to implicate OFF retinal ganglion
cells, i.e. neurons activated upon light decrement12. We thus
asked whether the visually evoked transient of the left or right
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HBO was driven by the stimulus onset (light-on) on the
ipsilateral eye, the stimulus offset (light-off) on the contralateral
eye, or both. To answer this question, we monitored the
HBO dynamics while exposing one eye to alternating on–off
illumination, the other being maintained at constant illumination.
We found that light-on and light-off stimuli induced a
sharp increase in activity in the ipsilateral and contralateral
sub-populations, respectively. This indicates that the ON and
OFF pathways both contribute to driving the HBO (Supplemen-
tary Fig. 7, N= 8 fish).

In a second experiment, we investigated the HBO response
to bilateral illumination by delivering a series of 100 ms-long
flashes simultaneously to both eyes with a 10 s inter-flash period
(Fig. 4g, h). Both left and right HBO displayed a significant
response as evidenced by the trial-averaged peri-stimulus signal
(Fig. 4i, n= 1311 flashes, N= 12 fish, Supplementary Fig. 7d, e),
but the across-trials dispersion appeared surprisingly
large (coefficient of variation 170%). The visual responses of
the left and right HBO were strongly anti-correlated (r= −0.5)
such that a given flash seemed to stochastically evoke a response
in either one of them (Fig. 4j). To evaluate whether this apparent
stochasticity may reflect a state-dependent sensitivity of the HBO,
we examined how the stimulus-evoked transient depended on the
particular phase of the oscillation at which the stimulus was
delivered. We used the Hilbert transform to extract the phase φ(t)
of the HBO oscillation. We then computed the derivative of the
left and right HBO signals at all times corresponding to a given
phase, separating those at which a stimulus had been delivered
from the times when the oscillation was running free. We then
subtracted the means of both groups to extract the sole
contribution of the stimulus to the HBO transient dynamics.
This analysis yielded a phase-dependent response curve for each
left and right HBO (Fig. 4k). It revealed that each subpopulation
is responsive to the visual stimulus within a particular phase
range and is essentially unresponsive for the rest of the cycle.
More specifically, each flash selectively reinforces the cluster that
is already active or about to become active after a period of rest.
The transition between left–right HBO activity being associated
with gaze shift events, such a phase-dependent response
curve can be interpreted as a motor-related gating mechanism.
In this view, each subpopulation selectively integrates light
increments generated by ipsiversive saccades as expected during
spatio-temporal sampling.

HBO entrainment by periodic uniform visual stimuli. In
biological and physical oscillators, phase-dependent responses
can be revealed through phase-locking and frequency entrain-
ment by periodic forcing29–31. Consistently, we observed that the
HBO oscillation exhibited a mean period of 20 s in the symmetric
stimulation experiments, i.e. precisely twice the stimulation
period Tstim= 10 s (Fig. 4l, Tosc= 20.5± 1.4 s, N= 12 fish).
Furthermore, the phase offset between the HBO and the stimulus
signal, defined as δφ tð Þ ¼ φ tð Þ $ π % t=Tstim, displayed a marked
bimodality, with two peaks located at 0 and π (Fig. 4m,
Rayleigh test, p< 0.01, Supplementary Fig. 8a). This indicates that
visual stimuli induce a phase-shift in the HBO oscillations such
that the flashes tend to coincide with successive right-to-left and
left-to-right transitions (Fig. 4m inset).

We suspected that this period-doubling mechanism ensued
from the particular choice of the stimulation period, which is
close to half the HBO endogenous period Tendo. We sought to
explore how this synchronization process varied with the
stimulation Tstim. To guarantee that the mean illumination
was independent of the stimulation period, we exposed the fish to
a series of alternating ON–OFF illuminations at six frequencies

(20 periods each, 10 s< Tstim< 60 s) separated by 100 s-long
periods of constant illumination (Fig. 5a). For each sequence, we
extracted the mean oscillation period Tosc and the phase-offset
distribution (Fig. 5b, c). In all tested visually responsive fish
(N= 5 of 7), this analysis revealed the existence of an entrainment
plateau at intermediate stimulation periods (20 s< Tstim< 40 s)
for which the HBO frequency was controlled by the stimulation
period (Tosc/Tstim≅ 1) and the phase-offset distribution was
strongly non-uniform (Fig. 5d–f, Rayleigh test, p< 0.01). At
higher and lower frequencies, the entrainment ratio Tosc/Tstim was
close to 2 and 0.5, respectively. The same experiments were
replicated for asymmetric stimuli and yielded qualitatively similar
results, albeit with a more pronounced phase-locking and a more
extended entrainment plateau (Fig. 5g–i, N= 11, Supplementary
Fig. 8).

A stochastic neural model of phototaxis. A rate model
approach32 was used to model the oscillatory dynamics of the
HBO and its visually evoked responses based on the connectivity
architecture suggested by our experimental observations (Fig. 6a).
We described the HBO as a half-centred oscillator consisting of
two symmetric modules with recurrent excitation, reciprocal
inhibition, and adaptation currents (Supplementary Methods).
Such a simple model, derived from a spiking, conductance-based
model, has been proposed for cortical circuits to account for the
phenomenology of perceptual bi-stability33, 34. This description is
consistent with the neurotransmitter identity of the different
clusters that participate in the self-oscillatory dynamics25.
The medial clusters of the HBO were identified as glutamatergic
and the lateral clusters as primarily GABAergic, reflecting
the hindbrain columnar organisation of the neurotransmitter
classes35.

The model parameters were adjusted to best reproduce the
self-sustained quasi-periodic oscillations observed in the absence
of visual input (Fig. 6c; Supplementary Fig. 9). Visual inputs were
assumed to be relayed to the HBO in the simplest way consistent
with the proposed connectivity (Fig. 6b). A step increase in the
illumination of the right eye was associated with a burst of
current in the right circuit, followed by a plateau, whereas a step
decrease in the illumination induced a transient current in the left
circuit to account for the OFF pathway contribution. We then
numerically implemented the stimulation protocols used in the
functional imaging experiments. The left and right circuit
responded to ipsilateral asymmetric visual stimuli, but we
further observed a phase-dependent intensity response curve to
symmetric flashes in qualitative agreement with its experimental
counterpart (Figs. 4k and 6d, e). The model allowed us to
reinterpret the latter result in terms of a phase-response curve
(PRC). Within this scheme, the effect of a stimulus is to evoke a
phase offset, i.e. a transient slowing down or speeding up of the
oscillatory dynamics. For each phase, we thus computed the
visually induced phase delay Δφ by comparing the phase
evolution after stimulation and in the free-running (without
stimulation) regime (Fig. 6f). The resulting π-periodic PRC
provides a direct interpretation of the phase-locking mechanism
around the phases π/2 and 3π/2, where the PRC displays a
negative slope30. Consistently, a phase-locking mechanism was
observed with an entrainment plateau around the endogenous
oscillation frequency (Fig. 6g). However, for this process to
quantitatively compare with the experimental data, the current
noise had to be set at a relatively low value (Supplementary
Fig. 10).

We sought to evaluate whether this minimal neural
model could account for the orientational phototactic behaviour
under the assumption that an imbalance in the HBO left vs. right
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activity distribution may be viewed as a proxy for the statistical
orientational bias in the animal locomotion25. We considered
configurations in which a distant light source was oriented at
an angle θs with respect to the animal’s rostro-caudal axis.
The total illumination impinging on each eye was taken
as a slowly varying function of θs, reflecting the large
visual field of view of the zebrafish, with a maximum at
θs= 80° for the right eye (Fig. 6h; Supplementary Methods).
We successively considered the stereo-visual comparison
and spatio-temporal sampling phototactic strategies. In the first
case, we examined the sole effect of a continuous unbalanced
bilateral illumination. For each angle θs, the illumination on
each eye was converted into a constant input current on the
ipsilateral subcircuit. We then numerically computed the HBO
dynamics and compared the mean left vs. right activity. We found
the HBO oscillations to be statistically biased towards the
subnetwork ipsilateral to the light source. This was assessed by
comparing both the time fraction during which one circuit was
more active than the other (Fig. 6h) and the mean activities of the
two circuits (Supplementary Fig. 11). Within the assumption
that such an imbalance reflects a reorienting bias25, this
result appears consistent with a positive phototactic mechanism.

In a second approach, we focused on the spatio-temporal
sampling strategy (Fig. 6i). We imposed identical illumination on
both eyes at all times so as to provide no explicit spatial cue to the
circuit. The stimulus intensity was assumed to be a slowly
decreasing function of the gaze orientation relative to the light
source. We posited that each left-to-right or right-to-left
transition of the HBO corresponded to a rightward or leftward
gaze shift of amplitude 30°, respectively. This ±15° gaze
oscillation in turn elicited a series of abrupt changes in the
perceived stimulus. This procedure yielded a left vs. right activity
bias that depended on the light source azimuth (Fig. 6i;
Supplementary Fig. 11) and was again consistent with a positive
phototactic behaviour.

Discussion
A central goal in neuroscience is to decipher the neural
computation underlying the execution of natural tasks. In this
respect, whole-brain functional imaging constitutes a game-
changing technique because it allows one to systematically
map entire neuronal populations that respond to a given sensory
stimulus7, 28, 36 or correlate with a particular motor pattern20, 25.
Here, this strategy was taken one step further: we used three
distinct functional properties as joint criteria to identify a
sensorimotor hub likely to play a key role for phototaxis. On the
basis of behavioural assays, we reasoned that there should exist a
circuit that both sets the pace of spontaneous saccades and
integrates visual stimuli. We thus successively delineated three
neuronal populations that (i) correlated with the gaze
signal during spontaneous saccades, (ii) displayed self-sustained
oscillating activity in eye-fixed configurations, and (iii) responded
to unilateral visual stimulation. We then used a morphological
registration algorithm to demonstrate the existence of a well-
defined intersecting neuronal ensemble in the rostral hindbrain,
identified as the HBO, that combines all three functionalities
(Supplementary Movie 4).

Using a rate model, we showed that the HBO’s phase-
dependent visual sensitivity suffices to explain the tendency
of larvae to reorient towards illuminated areas using both
stereo-visual comparison and spatio-temporal sampling. The
proposed sensorimotor processing leading to phototaxis can be
summarised as follows: (i) the HBO self-sustained oscillations
drive a quasi-periodic sequence of gaze shifts that allow the
animal to actively explore the light angular gradient; (ii)

asymmetric visual stimuli enhance the activity of the HBO clus-
ters ipsilateral to the eye that receives the larger illumination,
which in turn biases the fish reorientation towards the light
source; and (iii) a gaze shift-induced light increment reinforces
the active HBO subpopulation (ipsilateral to the new gaze
direction), thus delaying further left–right transition. Over mul-
tiple cycles, this process yields a statistical bias of the fish turning
probability towards the brightest region.

In foveate species, ocular saccades enable detailed visual
exploration by sequentially bringing different regions of the visual
scene onto a small area of the retina (the fovea) where the
resolving power is maximal37. The present study suggests that
saccades in afoveate species such as zebrafish may subserve a non-
image forming visual function by allowing the animal to
sequentially sample the light level at two distinct angles without
the need to execute a whole-body reorientation. Within this
scheme, the large stereotyped gaze shifts that characterize spon-
taneous saccades in zebrafish might be understood as a way to
maximise the detected contrast in the context of weak illumina-
tion gradients.

The HBO presents striking similarities with central
pattern generators (CPG). These specialized networks drive
cyclic motor patterns underlying rhythmic behaviours such as
locomotion, chewing, or breathing38. Although they can operate
in the absence of external sensory or proprioceptive inputs, the
latter have an important role in regulating the circuit dynamics to
produce behaviourally relevant motor output39. Their action
generally varies with the particular phase within the cycle
at which they occur40. The HBO differs from standard CPGs in
the sense that it drives a pseudo-periodic motor pattern—the
saccadic period displays significant variations from cycle to
cycle—but also controls the sequence of discrete turning-bout
orientations. By modulating the rhythmic HBO oscillations,
the visual inputs thus modulate the temporal pattern of reor-
ienting movements, effectively biasing the animal’s trajectory
towards brightest areas over multiple cycles. It has been recently
demonstrated, in Drosophila larvae, that sensorimotor neurons
can be engaged in distinct goal-directed behaviours41. It will thus
be interesting to see whether other sensory information—che-
mical cues, water flow, temperature gradients, etc.—may also be
relayed to the HBO, and how these multi-sensory cues are
weighted in order for the larva to navigate towards the most
favourable environments.

Beyond phototaxis, the sensorimotor processing operated
by the HBO may also be examined in the broader context of
active sensing. In vertebrates, including mammals, sensory
perception—olfaction, touch, vision, etc.—generally rely on
conjugated motor routines42, 43 such as sniffing, whisking,
eye saccades, etc. The rhythms of these motor patterns have
been shown to entrain low-frequency neuronal oscillations
in primary sensory cortices, which in turn modulate their sensi-
tivity according to specific motor phases44. This sensorimotor
coordination has a key role in sensory processing. Given
the generic nature of this neural mechanism, it will be exciting to
further investigate whether the HBO oscillation may similarly
drive, through afferent projections, rhythmic changes in
sensitivity in sensory centres such that the olfactory bulb or the
optic tectum.

Data availability. All data and codes used for the analysis are
available from the authors on request.
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