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We investigate experimentally the connection between short time dynamics and long time dynamical

heterogeneities within a dense granular media under cyclic shear. We show that dynamical heterogeneities

result from a two time scales process. Short time but already collective events consisting in clustered cage

jumps concentrate most of the nonaffine displacements. On larger time scales, such clusters appear

aggregated both temporally and spatially in avalanches which eventually build the large scales dynamical

heterogeneities. Our results indicate that facilitation plays an important role in the relaxation process

although it does not appear to be conserved as proposed in many models studied in the literature.
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Mechanically driven grains exhibit a dramatic slowing

down of their dynamics when their volume fraction is

increased above a certain value. This phenomenon, generi-

cally called jamming transition, shares a lot of experimen-

tal features with the glass transition and, indeed, it has been

suggested that they are both governed by similar under-

lying physical mechanisms [1]. Whether such mechanisms

originate from an ideal transition of any kind remains,

however, a matter of debate [2–4]. One of the major recent

advances in these fields has been the discovery of dynamic

heterogeneity (DH). Experimental and numerical works

have shown that the dynamics become increasingly corre-

lated in space approaching the glass and the jamming

transitions (see [5] for a recent review, and [6–10] more

specifically for granular media). This clearly shows that the

slowing down of the dynamics is related to a collective

phenomenon, possibly to a true phase transition. Different

theories have been developed in order to explain quantita-

tively this phenomenon. The crucial last missing piece

consists in understanding what is the underlying mecha-

nism leading to dynamic heterogeneity and, hence, respon-

sible for the slow relaxation. Many different possible

origins have been highlighted in the literature: dynamic

facilitation [11], soft modes [12,13], proximity to a mode

coupling transition [14,15], growing amorphous order

[16,17], etc. At this stage, it is therefore crucial to perform

detailed studies aimed at unveiling what are the building

blocks of DH.

The aim of this Letter is to perform such a type of

analysis for a granular system close to its jamming tran-

sition. Our starting point consists in identifying the ele-

mentary irreversible relaxation processes that we shall call

cage jumps in reference to the well-known interpretation of

the slowing down of the dynamics in terms of caging [5].

Our analysis shows that DH is the result of two processes

taking place on different time scales. On short time scales,

clustered cage jumps concentrate most of the nonaffine

displacements. On larger time scales such clusters, that

are already collective events, aggregate both temporally

and spatially in avalanches and ultimately build the large

scales dynamical heterogeneities. We find that dynamic

facilitation [11,18] clearly plays a major role in the devel-

opment of the avalanche process, although it seems to be

irrelevant in triggering it. A detailed discussion of our

findings on the basis of the current theoretical literature

is presented in the conclusion.

The experimental setup, the same as in [6,7], consists in

a horizontal monolayer of about 8300 bi-disperse steel

cylinders of diameter 5 and 6 mm in equal proportions

quasistatically sheared at constant volume fraction � ¼
0:84. The shear is periodic, with an amplitude �max ¼
�5�. A high resolution camera takes images each time

the system is back to its initial position � ¼ 0�. Both the

camera resolution and a better control of the lightening

uniformity now allow the tracking of N ¼ 4055 grains in

the center of the device without any loss. A typical experi-

ment lasts 10 000 cycles. We choose the time unit to be one

back and forth cycle, and the length unit to be the diameter

of small particles. Redoing the same analysis, as in pre-

vious studies [6,7], we observe that: (i) the dynamics is

isotropic, subdiffusive at short times, and diffusive at long

times; subdiffusion stems from the trapping of the particles

within cages of size �c ¼ 0:1, a value slightly smaller than

in [6,7], presumably because of small changes in packing

fraction and/or shear amplitude; (ii) introducing

Qp;tða; �Þ ¼ exp

�

�
k�~rpðt; tþ �Þk2

2a2

�

; (1)

where �~rpðt; tþ �Þ is the displacement of the particle p

between t and tþ � and a is a probing length scale. The

computation of the four points correlation function

�4ða; �Þ ¼ NðhQtða; �Þ
2i � hQtða; �Þi

2Þ, where Qtða; �Þ ¼
1
N

P

pQp;tða; �Þ, reveals that the dynamical correlation

length is maximal for �� ¼ 720 and a� ¼ 0:15.
In the present study, we first segment the trajectories in

separated cages introducing a novel algorithm. Consider a

trajectory SðtÞt2½0;T� on a total time T and split it at an
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arbitrary cut time tc into two sets of successive points: S1
for t1 2 ½0; tc� and S2 for t2 2�tc; T�. Then we measure

how well separated are the two sets of points:

pðtcÞ ¼ �ðtcÞ½hd1ðt2Þ
2it22S2

hd2ðt1Þ
2it12S1

�1=2; (2)

where dkðtiÞ is the distance between the point at time ti and
the center of mass of the subset Sk. The average hiSk is

computed over the subset Sk. �ðtcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tc=T � ð1� tc=TÞ
p

,

the standard deviation of the number of steps in a given set

for a uniformly distributed process is the natural normal-

ization that eliminates the large fluctuations arising when

tc is too close to the bounds of ½0; T�. We define a cage

jump at tc when pðtcÞ is maximal. The procedure is then

repeated iteratively for every subtrajectory until pmaxðtcÞ<
�2

c. The left-hand side of Fig. 1illustrates how, using the

above algorithm, we successfully segment the trajectories

into cages separated by jumps. Cage jumps are defined

within a resolution of 10 cycles. A direct and important

observation is that the distribution of the time spent in each

cage is exponential and characterized by an average ‘‘cage

time’’ �c ¼ 1160. For comparison,Qtða
�; � ¼ 1000Þ ’ 0:5

[7]. This means that in average a particle jumps only once

on the time scale over which Qtða
�; �Þ relaxes. The right-

hand side of Fig. 1 displays the relative values ofQtða
�; ��Þ

together with Ptð�
�Þ the relative percentage of particles

that have not jumped during ��. The correlation is straight-
forward: the bursts of cage jumps caught by the algorithm

are responsible for the major relaxation events of the

system. Anticipating on the following, one can also check

that the cage jumps detected by the algorithm are also

exactly located in the areas where the decorrelation is

maximal (compare Fig. 4 middle and right panels).

The left-hand side of Fig. 2 reveals that cage jumps

occur intermittently both in space and time. There are

very long intervals without a jump in a whole region of

space separated by sudden and collective relaxation events.

When clustering the cage jumps which are adjacent in

space (neighboring particles) and time (separated by less

than the jump resolution, i.e., 10 cycles) one can extract

two important features. The duration of these clusters

follows an exponential distribution with an average value

which remains small, typically of the order of 10 cycles.

On the contrary, cage jumps are not isolated in space: the

cluster size distribution has very fat tails. In the regime of

sizes experimentally available, it is well described by a

power law �ðNcÞ ’ N��
c , where Nc is the number of grains

within a cluster and � 2 ½3=2; 2� (see the right-hand side

of Fig. 2). Experimentally the average cluster size equals

18 and has a standard deviation of 34. We now compute the

square difference between the actual local deformation

around a grain i, and the one it would have if it were in a

region of uniform strain ":

D2
i ðt; �Þ ¼

X

j

½~rijðtþ �Þ � ":~rijðtÞ�
2; (3)

where the index j runs over the neighboring grains of

reference grain i and ~rijðtÞ ¼ ~rjðtÞ � ~riðtÞ. �2
i ðt; �Þ ¼

Min"ðD
2
i ðt; �ÞÞ is the local deviation from affine deforma-

tion during the time interval � (see [19] for details). We

FIG. 1 (color online). Left: 3D visualization of the trajectory

of a single particle. The color changes every time the algorithm

detects a cage jump. Right: Comparison between the relative

averaged relaxation Qtða
�; ��Þ=hQtit (in gray/cyan areas) and the

relative percentage Ptð�
�Þ=hPtit of particles that have not jumped

between t and tþ �� (in dark areas), �� ¼ 720.

FIG. 2. Left: Spatiotemporal position of the cage jumps: only

one direction in space is shown (x axis). Each point represents a

cage jump. The very flat clouds of points are clusters of collec-

tive and instantaneous cage jumps. Right: Probability distribu-

tion of clusters sizes.

FIG. 3 (color online). Left: Clusters of cage jumps concentrate

the highly nonaffine domains: the distance to affinity parameter

�ðt; �Þ (in levels of gray) is compared to the location of clusters

of collective cage jumps (with red boundaries) (� ¼ 30). Right:
Zoom on a highly nonaffine region (box on the left figure). The

displacements of the particles, magnified by a factor 2, are in

light grey (yellow). For convenience, the main streams creating

intense local shears are eye guided.
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observe (Fig. 3) that the clusters of cage jumps concentrate

the highly-nonaffine deformations and can be identified as

the elementary irreversible events of the dynamics.

We shall now unveil how the above short term events

build up large collective relaxation on long time scales.

The heavy tails in the distribution of the cluster sizes

(right-hand side of Fig. 2) suggests that the collective

cage jumps aggregate into some kind of avalanche process:

a first cluster triggers the apparition of successive bursts

nearby shortly after, which in turn trigger other nearby

bursts. Such avalanches would provide a natural mecha-

nism for the formation of the long term dynamical hetero-

geneities, as we shall see now. The left-hand side of Fig. 4

compares the cumulative distribution (cPdf) of the lag

times between adjacent clusters (red circles) to that of

independent events following a Poissonian process with

the same average lag time (dark line). Both cumulative

distributions intersect at a lag time corresponding precisely

to the time scale of the dynamical heterogeneities ��:
compared to the Poissonian process, there is an excess of

short lag times when � < ��, i.e., Probðlag< �Þ ¼
cPdfð�Þ is larger than for the Poissonian process, and an

excess of large lag times when � > ��, i.e., Probðlag>
�Þ ¼ 1� cPdfð�Þ is again larger than for the Poisonian

process, leading to an under representation of intermediate

lag times. [Note that the Poissonian distribution computed

from a randomly generated data set with the same cardi-

nality and the same average (green squares) is identical to

the analytical curve, excluding any finite size effect in the

above observation.] In the inset, one can see the two lag

time distributions corresponding to events separated by,

respectively, less and more than ��; these exponential

distributions reveal two very different typical decay times

(�s ¼ 120 and �l ¼ 1190). This separation of times under-

lines the aggregation of the clusters of cage jumps into

separated avalanches. The short time scale �s corresponds

to the delay between two successive events within a given

avalanche, whereas the long one �l is the time separating

two avalanches at a similar location. �l nicely corresponds

to the typical cage time of individual particles �c ¼ 1160,
indicating that almost no particle jumps twice within the

same avalanche. Spatially, we compute the distance be-

tween avalanches as the minimal distance between all the

couples of clusters separated by a lag time less than 2�s and
belonging to different avalanches. The minimal distance

between avalanches points toward an average distance of

27 and a standard deviation of 14, indicating a clear spatial

separation between avalanches. Also, the fractal dimension

of clusters dF gives a geometrical characterization of the

structure of the dynamically correlated regions. Within the

statistical accuracy, dF increases from 1.3 towards 2 during

the aggregation process. Thus, as in numerical studies on

glass-forming liquids [20,21], we find that dynamically

correlated regions become thicker on larger time scales.

Finally, selecting a time interval of length ��, initiated at

the beginning of a given avalanche, Fig. 4 compares the

spatial organization of the clusters in the avalanche and the

local relaxation of the system as measured by the field

Qp;tða
�; ��Þ. The correspondence is very good: the aggre-

gation of all the clusters within an avalanche is ultimately

building a large decorrelation area, also seen on the corre-

lation function Qp;tða
�; ��Þ. More interestingly, each clus-

ter in the middle panel of Fig. 4 is colored according to a

color gradient corresponding to the time at which it occurs,

thereby underlining the way a first cluster of cage jumps

has given rise to successive neighboring clusters.

To summarize, we have identified a two time scales

process that give rise to DH and is responsible for macro-

scopic relaxation. At short times, the particles collectively

jump within clusters whose sizes are very largely distrib-

uted. These clustered jumps trigger other ones nearby

within an avalanche process. The lifetime of such ava-

FIG. 4 (color online). Left: Cumulated probability distribution of the duration between spatially adjacent clusters. Experimental data

are in red circles, while green squares stand for a set of equal cardinality generated from an exponential distribution with the same

mean value. The black curve is the analytical version of this same distribution. The actual distribution and the exponential ones cross at

the lag time �� ¼ 720. Inset: Distribution of the lags below �� (blue triangles) and above (magenta crosses). Middle: Spatial location of

successive clusters of cage jumps. Colors correspond to the time at which clusters occur. Right: Spatial field of the two point

correlation function Qp;tða
�; ��Þ.
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lanches is much smaller than the time scale between two

avalanches in a similar location or, analogously, between

successive cage jumps of a given grain. DH are strongest

on a time scale which corresponds to the crossover between

these last two. It is interesting to discuss our results within

the perspectives provided by current theoretical ap-

proaches. Dynamic facilitation (DF) is one mechanism

put forward to explain slow and glassy dynamics.

Theoretical approaches based on DF usually focus on

kinetically constrained models [11,22,23]. They are char-

acterized by a common mechanism leading to slow dy-

namics: relaxation is due to mobile facilitating regions that

are rare and move slowly across the system. Here, we find a

dynamics characterized by avalanches inside which clus-

ters are facilitating each other. It is important to remark that

the fraction of particles relaxing because of facilitation,

i.e., belonging to a cluster but the first one (in time) of an

avalanche, is close to 0.85. However, in our system facil-

itation is not conserved as in kinetically constrained mod-

els since the first cluster of an avalanche is far from any

other possible facilitating region. Why then do particles

jump in the first cluster of an avalanche? This is hardly a

pure random event since it is already a collective phenome-

non clustered in space and time. Promising candidates to

explain it are the so-called soft modes or soft regions. It has

been shown that for hard spheres close to jamming [12] and

for moderately supercooled liquids [13] a significant frac-

tion of the dynamical evolution takes place along the soft

modes and dynamic heterogeneity is strongly correlated

with the softest regions. One can then conjecture that the

first clusters of avalanches correlate with the softest regions

of the system. The resulting scenario is a mixture of the one

based on soft modes and the one based on DF: dynamical

evolution starts from the softest regions but then propagate

on larger length scales by dynamic facilitation. Note that

the relationship between these two pictures has also been

discussed recently in an analysis of a kinetically con-

strained model [24]. Still, without having computed the

soft modes in a frictional packing one cannot eliminate

other possible (maybe complementary) mechanisms such

as hopping between local minima in energy landscape [25].

It is also interesting to remark that the mode coupling

theory of the glass transition is based on the emergence

of soft modes and predicts [26], as we find, that dynamical

correlated structures thicken in time. Obviously, all such

conjectures call for further investigation. From the experi-

mental point of view, one would like to identify the soft

modes and check their correlation with the clusters we

identified. Repeating the present study in simulations of

glass-forming liquids would be certainly very instructive.

One could check whether the building blocks of DH are the

same ones we identified for granular media. Finally, it

would be interesting to know how the processes we iden-

tified evolved with density and, in particular, which of the

DF and soft modes become more important when increas-

ing the density.
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