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By analyzing the displacement statistics of an assembly of horizontally vibrated bi-disperse

frictional grains in the vicinity of the jamming transition experimentally studied before (F. Lechenault,

O. Dauchot, G. Biroli and J.-P. Bouchard, Europhys. Lett., 2008, 83, 46003), we establish that their

superdiffusive motion is a genuine L�evy flight, but with a ‘jump’ size that is very small compared to the

diameter of the grains. The vibration induces a broad distribution of jumps that are random in time, but

correlated in space, and that can be interpreted as micro-crack events at all scales. As the volume

fraction departs from the critical jamming density, this distribution is truncated at a smaller and smaller

jump size, inducing a crossover towards standard diffusive motion at long times. This interpretation

contrasts with the idea of temporally persistent, spatially correlated currents and raises new issues

regarding the analysis of the dynamics in terms of vibrational modes.

Introduction

As the volume fraction of hard grains is increased beyond

a certain point, the system jams and is able to sustain mechanical

stresses. This rigidity/jamming transition has recently been

experimentally investigated1,2 in an assembly of horizontally

vibrated bi-disperse hard disks, using a quench protocol that

produces very dense configurations, with packing fractions

beyond the glass density fg, such that the structural relaxation

time sa is much larger than the experimental time scale. There is

a density range fg < f < fa where the strong vibration can still

induce micro-rearrangements through collective contact slips

that lead to partial exploration of the portion of phase space

restricted to a particular frozen structure. For fg < f < fJ z

0.842, the system is frozen but not rigid; the system can only

sustain an external stress for f larger than fJ, which appears as

a genuine critical point where a dynamical correlation length and

a correlation time simultaneously diverge, showing that the

dynamics occur by involving progressively more collective rear-

rangements.

One of the most surprising results of ref. 1 was the discovery of

a superdiffusive regime in the vicinity of fJ. In a time range that

diverges when f / fJ, the typical displacement of the grains

grows as sn, with n > 1/2, i.e. faster than the familiar diffusive
ffiffiffi

s

p

law, while always remaining small compared to the diameter of

the grains. It was also found that dynamical heterogeneities reach

a maximum when s ¼ s
*(f), precisely when the superdiffusive

character of the motion is strongest,2 in agreement with the

general bound on the dynamical susceptibility established in ref.

3 and 4. This superdiffusion was interpreted as the existence of

large scale convective currents, which were tentatively associated

with the extended soft modes that appear when the system loses

or acquires rigidity at fJ,
7 and along which the system should

fail. A similar interpretation of the dynamics of particulate

systems close to the glass or jamming transitions was promoted

in ref. 8. The intuitive idea is that energy barriers that the system

has to cross to equilibrate are essentially in the directions

(in phase space) defined by the soft modes. Within this picture,

the harmonic motion of the particles around a metastable

configurations can be used to guess the structure of the anhar-

monic barrier crossing events. This is certainly reasonable when

the barriers are small, so that the top of the barrier is still in

a quasi-harmonic regime.

The primary aim of the present paper is to revisit the above

interpretation for our system of hard-disks with friction, in the

light of a deeper analysis of the statistics of displacements. To our

surprise, we find that the distribution of rescaled displacements

is, in the superdiffusive regime, accurately given by an isotropic

L�evy stable distribution Lm. Furthermore, the exponent m char-

acterizing this L�evy stable distribution is equal to 1/n, where n is

the superdiffusion exponent, precisely what one would expect if

the motion of the grains was a L�evy flight, i.e. a sum of uncor-

related individual displacements with a power-law tail distribu-

tion of sizes such that the variance of the distribution diverges.5,6

This divergence only occurs at f ¼ fJ, but is truncated away

from the critical point, which explains why the motion reverts to

normal diffusion at very large times. This finding shows that the

rearrangements corresponding to the maximum of dynamical

correlations cannot be thought of as large scale currents that

remain coherent over a long timescale s
*. Superdiffusion is not

induced by long-range temporal correlations of the velocity field,

as was surmised in ref. 1. Quite on the contrary, the total

displacement on scale s* is made of a large number of temporally

incoherent jumps with a broad distribution of jump sizes. As is

well known, a L�evy flight is, over any time s, dominated by
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a handful of particularly large events. Hence, the only predict-

ability of the total displacement between t ¼ 0 and t ¼ s
* on

the basis of the motion in any early period, say between

t ¼ 0 / s
*/10, comes from the presence of one of these large

jumps in [0, s
*/10]. The situation for frictional grains might

therefore be quite different from what happens in supercooled

liquids or frictionless hard spheres, when soft modes should

indeed play an important role.

On the other hand, the very fact that individual jumps are

broadly distributed in such a dense system where grains can

hardly move means that these large jumps are necessarily

collective, with a direct relation between the size of the jump and

the number of particles involved that we discuss below. The

physical connection between superdiffusion and dynamical

heterogeneities in this system becomes quite transparent. Note

however that although we speak about ‘‘broad distributions’’ and

‘‘large jumps’’, one should bear in mind that all of this takes place

on minuscule displacement scales, a few 10�2 of the grains

diameter! Our L�evy flights are therefore Lilliputian walks with

a diverging second moment.

The experimental set-up and the quench protocols are

described in detail in ref. 1, and summarized in Fig. 1. The

stroboscopic motion of a set of 8500 brass cylinders (‘‘grains’’) is

recorded by a digital video camera. The cylinders have diameters

d1 ¼ 4 � 0.01 mm and d2 ¼ 5 � 0.01 mm and are laid out on

a horizontal glass plate that harmonically oscillates in one

direction at a frequency of 10 Hz and with a peak-to-peak

amplitude of 10 mm. The cell has width L z 100 d1, and its

length can be adjusted by a lateral mobile wall controlled by a mm

accuracy translation stage, which allows us to vary the packing

fraction of the grains assembly by tiny amounts (df/f � 5

�10�4). The position of the grains is tracked within an accuracy

of 2. 10�3d1. In the following, lengths are measured in d1 units

and time in cycle units.

Statistical characterization of the motion of grains

Fig. 2-left shows the trajectories of a single grain during the

whole experimental window for packing fractions sitting on both

sides of the transition fJ. As expected, the typical displacements

are much larger at lower packing fractions. The so-called caging

dynamics appear clearly on the trajectories obtained at larger

packing fractions: the grains seem to stay confined around fixed

positions for a long time and then hop around from one cage to

another over longer time scales. The striking feature of these

curves is the remarkably small amplitude of the motion that we

alluded to above. Even at the lowest packing fractions, the grains

do not move much further than a fraction of a diameter over the

total course of one experimental run. Another evidence of the

absence of structural relaxation is given by the low percentage of

neighboring links (in the Vorono€ı sense) that are broken during

the 104 cycles of an experimental run (see Fig. 2-right). This

fraction goes from around 5% for the loosest packing fraction to

around 0.2% for the densest. This confirms that for densities

around fJ, the system is deep in the glass phase where structural

relaxation is absent, i.e. in a very different regime from the one

studied in ref. 9–11.

We will denote by Ri
t ¼ (xi

t, yi
t) the vector position of grain i at

time t in the center-of-mass frame. Lagged displacements are

defined as ri
t(s) ¼ Ri

t+s � Ri
t for grain i between time t and t + s.

We have checked in detail that the statistics of ri
t along the x and

the y axes are identical, or more precisely that the motion is

isotropic, in spite of the strongly anisotropic nature of the

external drive. This in itself is a non trivial observation, which

shows that the random structure of the packing is enough to

convert a directional large scale forcing into an isotropic noise on

small scales. From now on, we will thus focus on the total

displacement ri
t ¼ |ri

t|. We measure typical displacements for a

density f and lag s as the mean absolute displacement, defined as:

sf(s) ^ h|rit(s)|ii, t (1)

where the time average h$it is performed over 10 000 cycles. We

have chosen to estimate sf(s) by the mean absolute value devi-

ation instead of the root mean square displacement, as done in

ref. 1 and 2 because, as we shall see, the latter diverges when

approaching the transition.

The evolution of sf(s) with the packing fraction is presented in

Fig. 3, see ref. 1 Note the very small values of sf(s) � d1 at all

timescales, which is a further indication that the packing indeed

remains in a given structural arrangement. At low packing

fractions f < fJ and at small s, sf(s) displays a sub-diffusive

behavior. At longer times, the diffusive motion is recovered. As

the packing fraction is increased, the typical lag at which this

cross-over occurs becomes larger and, at first sight, sf(s) does

not seem to exhibit any special feature for f¼ fJ (corresponding

to the bold line in Fig.3). Above fJ, an intermediate plateau

appears before diffusion resumes. However, a closer inspection

Fig. 1 Left: A sketch of the experimental setup. Right: A picture of the

grains together with an illustration of the relaxation pattern of the field

qi at s
* (see text below for details).

Fig. 2 Left: Typical trajectories of a grain during a 10 000 cycle acqui-

sition. The packing fractions are f¼ 0.8402 (red), 0.8417 (orange), 0.8422

(yellow), 0.8430 (green). fJ would stand between the orange and yellow

trajectories. Right: Fraction of broken neighborhood relationships (links

in the Vorono€ı tessellation sense), as a function of time for all packing

fractions.
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of sf(s) reveals an intriguing behavior, that appears more clearly

on the local logarithmic slope n ¼ v ln sf(s)/v ln(s) shown in

Fig. 3. When n ¼ ½, the motion is diffusive, whereas at small

times, n < ½ indicates sub-diffusive behavior. At intermediate

packing fractions, instead of reaching ½ from below, n over-

shoots and reaches values z 0.65 before reverting to the ½

mentioned above at longer times. Physically, this means that

after the sub-diffusive regime commonly observed in glassy

systems, the particles become super-diffusive at intermediate

times, before eventually entering the long time diffusive regime.

At higher packing fractions, this unusual intermediate super-

diffusion disappears: one only observes the standard crossover

between a plateau regime at early times and diffusion at long

times. We would like to emphasize that this phenomenon is fully

developed for motion amplitudes much larger than the resolution

of our apparatus and for intermediate lags where the statistics are

well converged. This, together with the physical arguments

provided in ref. 2 exclude the possibility that super diffusion

might be a measurement artifact. In order to characterize these

different regimes, we define three characteristic times: s1(f) as the

lag at which n(s) first reaches 1/2, corresponding to the beginning

of the super-diffusive regime, ssD(f) when n(s) reaches

a maximum n*(f) (peak of super-diffusive regime), and sD(f)

where n(s) has an inflection point, beyond which the system

approaches the diffusive regime. These characteristic timescales

are plotted as a function of the packing fraction in the bottom-

left panel of Fig. 3. Whereas s1 does not exhibit any special

feature across fJ, both ssD and sD are strongly peaked at fJ. We

have also shown on the same graph the timescale s
* where

dynamical heterogeneities are strongest (see ref. 1 and below). As

noted in the introduction, s* and ssD are very close to one another

and we will identify these two timescales in the following section.

We now turn to the probability distribution of the displace-

ments ri
t(s). We have represented in the bottom-right panel of

Fig. 3 the distributions accumulated for all grains and instants

for the packing fractions closest to fJ and several values of lag-

time s. The horizontal axis has been normalized by a root mean

square displacement, and a Gaussian distribution is also plotted

for comparison. We find that the tails of the distributions are

much fatter than the Gaussian, unveiling the existence of

extremely large displacements (compared to typical values) in the

region of the time lags corresponding to superdiffusion. As we

will discuss below, these fat tails tend to disappear when one

leaves the superdiffusion regime, i.e.when |f� fJ| and/or | ln s/s*|

become large.

Before characterizing more precisely these probability distri-

butions, we would like to mention that we have removed

‘‘rattling events’’ from our analysis, i.e. events where particles

make an anomalously large back and forth motion, of amplitude

larger than (say) 0.1 d1. Some of these events are due to the same

grain rattling during a large fraction of the experimental run,

while other events are localized in time for a given grain, and

could actually well be part of the extreme tail of the distribution

seen in Fig. 3. Our point here is that the observed fat-tails are not

an artifact due to a few ‘‘loose’’ grains – each and every one of the

grains seem to contribute at one point or another in its history to

these fat tails.

A neat way to characterize the probability distribution of the

displacements is to study the generating function of the squared

displacements:

Fðl; sÞh
D

e�lrt 2
i

ðsÞ
E

i;t
¼
X

N

k¼0

ð�lÞk
k!

hrt 2ki ðsÞi (2)

As a benchmark, one can easily compute F(l,s) in the case of

isotropic Gaussian diffusion. One obtains:

Fðl; sÞG ¼ ~FGðxÞ ¼
1

1þ x
(3)

where x ¼ 2sf(s)
2l is the scaled variable. When computing

F(l,s) for the empirical data, one finds, as expected, systematic

discrepancies with the F(l,s)G. The rescaling of the different

curves when plotted as a function of x, on the other hand, works

very well, as can be inferred from the scaling of the probability

distributions themselves.

The most important finding is that the small x behavior of the

empirical F(l,s) is singular: as shown in the top-right panel of

Fig. 4, 1/F(l,s) � 1 behaves as xa when x� 1, with a z 0.80. It

is easy to show that such a singular behavior is tantamount

to the existence of a power-law tail in the distribution of r(s),

P
s
(r) � r /N

r�1�m with a ¼ min(1, m/2). The value of a therefore

corresponds to mz 1.6 < 2, which means that the variance of the

distribution of r is formally divergent, or at least dominated by

a large physical cut-off r max. This suggests fitting F(l,s) over

the whole x regime by the appropriate Laplace transform of

a L�evy stable distribution Lm, that reads for the present isotropic

two-dimensional problem:12

Fig. 3 Top: Average displacement sf(s) ^ h|rit|ii, t (left); and local slope

n¼ v ln sf(s)/v ln s (right) as functions of the lag s for all studied values of

f. The dotted dark line corresponds to fJ. Bottom left: Characteristic

time scales extracted from the analysis of n(s) including s
*, which will be

introduced and discussed in the section devoted to dynamical heteroge-

neities. Bottom right: Probability distribution function of the displace-

ments ri, Ps
(r), normalized by sf(s), for different values of the lag time

s at f ¼ 0.8417 (right). A Gaussian distribution (black dotted curve) is

shown for comparison.
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Fðl; sÞL¼ ~FLðxÞ ¼
ð

N

0

dz e�z�CðxzÞm=2 (4)

where m < 2 and C is a numerical constant. It is easy to check that

for small x, ~FLðxÞz1� C G 1þ m

2

� �

xm=2. Our main result is

that this function is a very good fit to the empirical data corre-

sponding to f z fJ and s z s
*, for all values of x, see the

bottom-left panel in Fig. 4. The optimal value of m is slightly

smaller, m z 1.6, than the one obtained by a fit of the small

x region. The quality of the fit suggests that the distribution of

displacements is indeed an isotropic L�evy stable distribution Lm

of index m.

We have checked that other distribution functions with power-

law tails achieve a much poorer fit to the data. For example,

a Student distribution of displacements (which cannot be

obtained as the sum of independent jumps, contrarily to the L�evy

distribution) leads to:

Fðl; sÞS ¼ ~FSðxÞ

¼ 1�
�

C
0
x
�m=2

ð

N

0

dz
e�z

�

zþ C
0
x
�m=2

(5)

where m < 2 and C0 is another numerical constant. Although

F(l,s)S has the same small x singularity and the same large x

behavior as F(l,s)L, it turns out not to be possible to adjust the

parameter C0 in such a way to adjust simultaneously the small

and large x behavior of the empirical F(l,s).

What is most significant, however, is that the value of the L�evy

index m corresponding to the best fit turns out to be very close to

the one expected in the case of a L�evy flight where the diffusion

exponent n is given by 1/m, since we find n z 0.65 (see Fig. 3)

whereas 1/m z 0.625.

Fig. 4 bottom-right gives the value of the fitting parameter

3 ¼ 1 � m/2 in the plane f, s, obtained from the small x behavior

of F(l,s), corresponding to large displacements. We see that the

effective values of 3 (resp. m) become closer to 0 (resp. 2), cor-

responding to normal diffusion, as when |f � fJ| and/or |ln s/s*|

increase. We believe that this corresponds to a so-called ‘‘trun-

cated’’ L�evy flight,13 with a cut-off value in the distribution of the

elementary jump size that becomes smaller and smaller as one

departs from the critical point, rather than a continuously

varying exponent m. In other words, a plausible scenario that

explains the behavior of 3 as a function of f and s is that the tail

of the elementary jump size distribution is given by:

P1ðrÞ �
½r0ðfÞ�m
r1þm

(6)

where the exponent m z 1.6 is independent of f, whereas the

typical scale of the jumps r0(f) and the cut-off rmax(f) both

depend on f. It is reasonable that rmax(f) only diverges at f¼ fJ,

while r0(f) has a regular, decreasing behavior as a function of f.

In fact, the parameterC appearing in the L�evy distribution above

is directly proportional to r0
m.

Assuming that the jumps are independent, the distribution of

displacements P
s
(r) on a time scale s is given by the s-th

convolution of P1(r), which converges to a L�evy distribution

of order m when rmax ¼ N and predicts r f s
n with n ¼ 1/m

(see e.g. ref. 6). For finite rmax, Ps
will be very close to Lm in the

intermediate regime 1 � s � sD, where sD � (rmax/r0)
m, before

crossing over to a diffusive regime at very long times. If rmax(f)

behaves as |f � fJ|
�z, the diffusion time sD should diverge as

|f � fJ|
�zm when approaching fJ.

In order to check directly whether the jumps are indeed inde-

pendent, we have measured the correlation of instantaneous

(s ¼ 1) velocities hrit.rit+t0ii,t. As shown in Fig. 5, this correlation

function indeed decays extremely fast with the lag t0, excluding
the possibility that superdiffusion could be due to long-range

correlations in the displacements. However, we discovered that

Fig. 4 Top: F
s
(x) as a function of �log10(x) for s ¼ s

* ¼ 373 (dots, left

panel) and 1/F
s
(x) � 1 as a function of x for different values of s (dots,

right panel), from 1 (blue) to 104 (red). For both plots: f ¼ fJ and the

solid line corresponds to the Gaussian fit 1/(1 + x). Bottom-left: Fit of

F
s
(x) for f z fJ and s z s

* using a L�evy distribution model F(l,s)L
with index m ¼ 1.6, and comparison with a Student distribution model

F(l,s)S with the same small x behavior. Bottom-right: Fitting parameter

3 ¼ 1 � m/2 as a function of f and s.

Fig. 5 Correlation of the instantaneous (s ¼ 1) velocity vectors

|hrit.rit+t0ii,t| (blue circles) versus the correlation of their amplitudes

hrit.rit+t0ii,t (red squares) as functions of the lag t0, for f z fJ.

3062 | Soft Matter, 2010, 6, 3059–3064 This journal is ª The Royal Society of Chemistry 2010
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the amplitude of the displacements, proportional to the param-

eter r0, reveal long-range correlations, decaying approximately

as �lnt0. This suggests that some slow evolution takes place

during an experimental run, that affects the value of r0 over time.

A natural mechanism is through the fluctuations of the local

density f (see below), that feedback on r0. The approximately

logarithmic decay of the correlations is interesting in itself and

characteristic of multi-time scale glassy relaxation. These long-

ranged correlations slow down but fortunately do not jeopardize

the convergence towards a L�evy stable distribution.17 Therefore,

the above interpretation in terms of a jump dominated super-

diffusion, instead of persistent currents, is warranted.

Dynamical correlations

The above analysis focused on single grain statistics and estab-

lished that the displacement of a grain has a L�evy stable distri-

bution in the superdiffusive regime. This means that the motion

of each grain can be decomposed in a succession of power-law

distributed jumps. But if ‘‘large’’ jumps can occur in such a jam-

med system, this necessarily implies that these jumps are corre-

lated in space. In order to characterize these dynamical

correlations, we have introduced in ref. 1 the following local

correlation function:

qtiða; sÞhexp� rt 2i ðsÞ
2a2

(7)

where a is a variable length scale over which we probe the

motion. Essentially, qi
t(a, s) ¼ 0 if within the time lag s the

particle has moved more than a, and qi
t(a, s) ¼ 1 otherwise:

qi
t(a, s) is a mobility indicator. The average over all i and t defines

a function akin to the self-intermediate scattering function in

liquids:

�Qða; sÞh
�

1

N

X

i
qi

tða; sÞ
�

t

(8)

Note that it is closely related to the previously introduced

generating function through �Qða; sÞ ¼ F l ¼ 1

2a2
; s

	 


, which we

have characterized in the previous section.

The dynamical (four-point) correlation function is defined as

the spatial correlation of the q field:

G4ðR; a; sÞ ¼ hdqtiða; sÞdqtjða; sÞijt; ~Ri�~Rjj j¼Rwhere dqti(a,s) ¼
qti(a,s)� �Q(a,s) and is plotted for three packing fractions on

Fig. (6)-left. Its sum over all R0s defines the so-called dynamical

susceptibility c4(a, s). Through simple manipulations, it is easy to

show that c4(a, s) is related to the variance of Q as (for a review

see e.g. ref. 4):

c4ða; sÞ ¼
1

N

 

X

i

dqtiða; sÞ
!2* +

t

(10)

We have shown in ref. 1 that c4(a, s) has, for a given f, an

absolute maximum c4
* ¼ c4(a

*, s*), which as expected sits on the

line corresponding to �Q(a,s)z1/2, i.e. such that half of the

particles have moved by more than a. The amplitude of this

maximum, which can be interpreted as a number of dynamically

correlated grains, grows as f approached fJ, indicating that the

jump motion of the grains becomes more and more collective as

one enters the superdiffusive L�evy regime, as anticipated above.

Note in particular that s* behaves in the same way as ssD, the time

at which the superdiffusion exponent n reaches its maximum.

We furthermore found1 that the four-point correlation

G4
*(R) ^ G4(R, a

*, s*) is a scaling function of R/x4 (see inset of

Fig. 6-right), where x4(f) is the dynamical correlation length such

that c4
*
f x4

2.

All these results were reported in ref. 1 and are recalled here for

completeness. The behavior of c4
*(f) was furthermore shown in

ref. 2 to be well accounted for by the following upper boundary,

derived in ref. 3 and 4: c4 $ (v �Q/vf)2hf2ic, where hf2ic is the

variance of the local density fluctuations. Here, we want to

present further speculations, first on the relation between the size

of the ‘micro-jumps’ and dynamic correlations, and then on the

higher moments of the distribution of Q(a, s).

By conservation of the number of particles, the local change of

density df is related to the divergence of the displacement field

by: df/f ¼ V~$~r. If we invoke a kind of Reynolds dilatancy

criterion whereby the local density must fall below some

threshold for the system to move, the displacement field must be

correlated over some length x4 such that V~$~r�r/x4 z c, where c is

a small number, possibly dependent on f, and of the order of

10�3 � 10�2 (i.e. the relative difference between fJ and fg). This

immediately leads to a relation between the typical size of the

jumps after time s and the required scale of the cooperative

motion:

x4ðsÞ �
rðsÞ
c

fs
n; s#s

* (11)

This very simple argument predicts that x4 should be � 102 �
103 times larger than typical displacements, which is indeed the

case (see Fig. 6). Furthermore, using s
*
f sD one finds r(s*) f

rmax, and therefore, using the truncated L�evy flight model above,

a power-law divergence of x4(f) as |f � fJ|
�z. This divergence

might change if c strongly depends on the distance |f � fJ|.

Turning now to higher cumulants of the distribution ofQ(a*, s*),

one can show that they are related to the space-integral of

higher order correlation functions of the dynamical activity.

For example, the skewness 26 of Q is 1/N2 times the space

integral of the 6-point correlation function, defined

as:G6ðR;R
0
; a*; s*Þ ¼ hdqt*i dqt*j dqt*k ijt; ~Ri�~Rjj j¼R; ~Ri�~Rkj j¼R

0where dqi
t*

is a shorthand notation for dqi
t(a*, s*).

Fig. 6 Left: Four-point correlatorG4
*(R)¼G4(R;sf(s

*), s*) as a function

of R for f¼ 0.8402 (red), 0.8417 (black), 0.8426 (blue). Right: Dynamical

correlation as a function of the packing fraction; (Inset: Rescaling of log

[G4
*(R)/G4

*(0)] as a function of
ffiffiffiffiffiffiffiffiffiffi

R=x4
p

for 8 densities around fJ).

From ref. 1.
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Similar relations hold for higher moments. The simplest

scenario is that all these higher order correlation functions are

governed by the same dynamical correlation length x4, extracted

from G4(R, a, s). This is what happens in the vicinity of standard

phase transitions, for example. If this is the case, and provided

that c4
*
f x4

2, one can show that the following scaling relations

should hold:

26 � 26;c

ffiffiffiffiffi

c*
4

N

r

; k8 � kc;8
c*
4

N
(13)

where26, k8 are respectively the skewness and kurtosis of 1/N
P

iqi
(related to the 6- and 8-point connected correlation functions),

and 26,c,k8,c the corresponding values at the critical point, i.e. for

systems of sizeN smaller than the correlation volume c4
*
f x4

2. If

these scaling relations are valid, the determination of 26,c,k8,c
using the above equations should give the same values for any f

close to fJ. Unfortunately, our statistics are not sufficient to

make definitive statements, although the data is indeed

compatible with such scalings. The notable feature is that both

26,cx�1 and k8,cx�5 are found to be negative, although the

error bar on both quantities is large. Interestingly, if we assume

that the displacements are perfectly correlated within a correla-

tion blob of size x4, the L�evy flight model with m ¼ 1.6 makes the

following predictions:

26,c z � 0.12; k8,c z � 1.37 (14)

in qualitative agreement with our data (note however that there is

an unknown proportionality factor in eqn (13). A Gaussian

diffusion model, on the other hand, predicts 26,c ¼ 0 and

k8,c ¼ � 6/5, corresponding to a uniform distribution of Q in

[0, 1]. A kurtosis smaller than � 6/5 means that the distribution

of Q tends to be spiked around 0 and 1. Finally, as f increases

beyond fJ, the negative skewness of Q markedly increases. This

is a sign that the dynamics become more and more intermittent,

‘‘activated’’ with a few rare events decorrelating the system

completely, while most events decorrelate only weakly. Since we

fix �Q(a*,s*) ¼ 1/2, this leads to a diverging negative skewness in

the limit where the probability of rare decorrelating events tends

to zero. The idea of characterizing the skewness of Q might

actually be an interesting tool to characterize the strength of

activated events in other glassy systems.

Conclusion

The central finding of this work is that the superdiffusive motion

of our frictional grains in the vicinity of the jamming transition

appears to be a genuine L�evy flight, but with ‘jumps’ taking place

on a Lilliputian scale. This interpretation contrasts with the

original suggestion made in ref. 1, where anomalous diffusion

was ascribed to persistent, spatially correlated currents. The

vibration of the plate induces a broad distribution of jumps that

are random in time, but correlated in space, and that can be

interpreted as micro-crack events on all scales. As the volume

fraction departs from the critical jamming density fJ, this

distribution of jumps is truncated at smaller and smaller jump

sizes, inducing a crossover towards standard diffusive motion at

long times. This picture severely undermines the usefulness of

harmonic modes as a way to rationalize the dynamics of our

system (although this conclusion might of course not carry over

to frictionless grains, or to thermal systems). The detailed study

of these modes, and the difficulty to analyze them in the present

system, is discussed in ref. 15.

We have also presented several other speculations about the

relation between the dynamical correlation length x4 and the size

of the jumps, and the structure of higher order dynamical

cumulants. The idea of using the 6-point skewness as a quanti-

tative measure of the importance of activated events in the

dynamics of glassy systems seems to us worth pursuing further.
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