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We identify the pattern of microscopic dynamical relaxation for a two-dimensional glass-forming

liquid. On short time scales, bursts of irreversible particle motion, called cage jumps, aggregate into

clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This

propagation of mobility takes place along the soft regions of the systems, which have been identified by

computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical

heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the

one found for dense glassy granular media.
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Identifying the mechanisms responsible for the slowing

down of the dynamics of supercooled liquids is still an

open problem despite decades of research. While tradi-

tional descriptions of glassy systems have mainly focused

on energy landscape concepts [1] and spatially averaged

quantities, recent work has centered on the real-space

properties reflected in the heterogeneous dynamics shown

by nearly all glass-forming materials. Concomitantly, in-

vestigations of the behavior of dense driven granular media

have uncovered tantalizing similarities with the dynamics

of supercooled liquids [2–5] and provided new inspirations

for research on the glass transition. One notable finding

from the granular studies is that dynamic heterogeneities

are organized into a hierarchy of structures, each of them

characterized by its length and time scales [6,7]. Cage

escapes by individual particles occur in clusters which, in

turn, are organized into larger collections that were called

‘‘avalanches,’’ referring to large collective events com-

posed sequentially by smaller ones.

An important question is whether this hierarchy of dy-

namic heterogeneities is present in thermally equilibrated

supercooled liquids or, instead, it is a peculiarity of athe-

rmal dissipative systems. Evidence of organized motion in

liquids has already been reported [8–12]: on relatively fast

time scales, the complex sequence of particle motions

results in stringlike clusters of displacements, see, e.g.,

[10]; on time scales on which relaxation takes place,

particle motion is organized in compact clusters [11].

While these studies are encouraging, neither the extended

spatial hierarchy of particle escape within clusters and

avalanches nor how the dynamical correlations form start-

ing from microscopic time scales out to the structural

relaxation time have been explored. In this Letter we

identify these mechanisms and demonstrate that the dy-

namic heterogeneities of a supercooled liquid are, in fact,

organized in an hierarchy essentially identical to that found

in granular systems.

Understanding how the spatial distribution of kinetics

arises from the structure of the underlying particle con-

figurations represents a central challenge for any complete

discussion of a glass transition. We therefore also inves-

tigate how this hierarchy of length and time scales is ex-

pressed in the configurational structure. Using the

isoconfigurational ensemble and the local Debye-Waller

(DW) factor, correlations between structure and dynamic

heterogeneities have been established [13,14]. Here we

show mechanistically and in detail how clusters and ava-

lanches develop on soft regions of the structure and, in-

versely, how these relaxation events change the spatial

distribution of the soft regions.

We shall address these questions by performing molecu-

lar dynamics simulations on a new two-dimensional model

of glass-forming liquid and applying the cluster analysis

developed in [6]. We focus on a 2D nonadditive binary

mixture of N ¼ 5760 particles enclosed in a square box

with periodic boundary conditions, interacting via purely

repulsive potentials of the form uabðrÞ ¼ "ð�ab=rÞ
12. The

mole fraction of the smaller particles is set to x1 ¼ 0:3167.
All units are reduced so that �11 ¼ " ¼ m ¼ 1:0, m being

the mass of both types of particle. The nonadditivity po-

tential, namely, �12 ¼ 1:1�11 and �22 ¼ 1:4�11, hinders

the formation of crystalline microdomains; see [15] for

more details. Molecular dynamics simulations were carried

out at constant NVT (T ¼ 0:4) using the Nose-Poincaré

Hamiltonian [16] after equilibration at constant NPT as

described in [14]. All time units are scaled in such a way

that the structural relaxation time ��, defined as the time

required for the self-intermediate scattering function to

decay to 1=2, equals 103. The typical collision time is

0.12 in these units.
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To compare the dynamic heterogeneities of the simu-

lated liquid and granular system we quantify the local

relaxation of a particle p by

Qp;tða; �Þ ¼ exp

�

�
k� ~rpðt; tþ �Þk2

2a2

�

; (1)

where �~rpðt; tþ �Þ is the displacement of the particle p

between t and tþ � and a is the length scale over which

the motion is probed. A global measure of the relaxa-

tion is then provided by the correlation function,

Qtða; �Þ ¼
1
N

P

pQp;tða; �Þ, and its fluctuations �4ða; �Þ ¼

NVar½Qtða; �Þ�. We focus on the values a� ¼ 0:29 and

�� ¼ 1078 leading to maximal dynamic heterogeneity,

i.e., highest value of �4ða; �Þ (see [17] for details). Note

that �� is very close to the relaxation time �� ¼ 1000.
To define cage jumps, we follow the same procedure as

in [6]. Briefly, the trajectory of each particle is divided in

two at a time tc, tc being chosen such that the centers of

mass of the subtrajectories on either side of tc are best

separated. tc is designated a cage escape, and the process is
repeated iteratively for each of the subtrajectories until the

maximal separation drops below a threshold distance stem-

ming from the dynamics itself. This allows one to separate

the dynamics into periods of inefficient vibrational motion

separated by relaxation events also called cage jumps (see

inset of the top-left panel of Fig. 1). Note that a particle

undergoing a cage jump does not necessarily change neigh-

bors, since the typical jump distance is well below the

particle size. The relative percentage of particles that

have not jumped matches perfectly the temporal evolution

of the dynamical relaxation (Fig. 1, top left) and the

location of the cage jumps coincides with the areas of

maximal decorrelation (Fig. 1, top right).

Figure 1 (top right) already suggests some level of

spatiotemporal organization of the cage jumps. This can

be further quantified following the analysis performed for

the two-dimensional granular media [6]. The outcome is

remarkably similar (Fig. 1, bottom right): First, cage jumps

aggregate into clusters, which are formed by cage jumps

adjacent in space (as measured by the neighboring parti-

cles) and time (separated by less than �th ¼ 28, which is

twice the precision of the cage detection algorithm). The

size of these clusters is broadly distributed with an average

value of 7.6 cage jumps per cluster. Second, clusters ag-

gregate into avalanches. The probability distribution func-

tion (PDF) of the lag times �1 separating each cluster from
the nearest adjacent one, normalized by its average value

h�1i, is compared to the equivalent distributions for ran-

domly distributed clusters in space and time (Fig. 1, bottom

left). There is a clear excess of both small and large lags:

the PDF is very well fitted by the superposition of two

Poissonian processes with two different time scales �S ¼
240 and �L ¼ 1746. The short time scale corresponds to

the existence of a correlation among adjacent clusters. The

large one is related to the average time spent in a cage.

Table I compares the actual values of these parameters to

those of the granular system investigated previously. We

also report the value of the dynamical correlation length

�4, obtained from the spatial range of the dynamical cor-

relatorG4 computed at ��; see, e.g., [18]. The dynamics are

strikingly similar. One difference we find is that the aver-

age distance between avalanches is somewhat smaller in

the liquid case than in the granular one: �10 as compared

to�27. More evidence, as well as details on the procedure

for identifying cage jumps and analyzing them, are re-

ported in the supplementary material [19].

FIG. 1 (color online). Cage jump spatiotemporal organization.

Top left: Comparison between the relative averaged relaxation

Qtða
�; ��Þ=hQtit [gray (cyan)] and the relative percentage

Ptð�
�Þ=hPtit of particles that have not jumped between t0 and

t0 þ �� (black). Inset: Trajectory of a single particle over 14��.
Color changes when the particle jumps. Top right: (inner

top) Map of Qt0
ð��Þ; (inner bottom) particles having jumped

during the same lag ��; jumping time is color-coded. Bottom

left: Cumulative probability distribution function of the lag

between adjacent clusters �1 (thick green curve), compared to

the corresponding curve for a random distribution of clusters

(black). Inset: PDF of �1 (circles). The exponential distribution

with same mean is shown for comparison (solid line), as well as

exponentials of typical time scale �S and �L (dotted lines).

Bottom right: Spatiotemporal view of the cage jumps in a

specific region of space, projected on the x axis. The cluster

size is color-coded. Note the aggregation of clusters in ava-

lanches. The typical time scales of the dynamics are shown.

TABLE I. Comparison of length and time scales normalized so

that �� ¼ 1000. See definitions in the text.

a� �4 �� �� �S �L

Supercooled liquid 0.29 2.9 1000 1078 240 1746

Dense granular media 0.12 3.1 1000 915 155 1384
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Altogether, this first part of our study clearly demon-

strates that the nature of dynamic heterogeneity in super-

cooled and granular systems is largely the same, a

nontrivial result given the difference between an equili-

brated thermal liquid and a nonequilibrium steady state of

vibrated grains. Recent results [7] obtained by changing

the density of the granular sample suggest that our model

of a supercooled liquid would compare with a granular

system characterized by a slightly smaller density than the

one studied here. Obviously the next step is to perform a

careful study of the temperature dependence, which will

require significant further supercooling.

The existence of avalanches is consistent with a scenario

in which the first cluster triggers the appearance of succes-

sive clusters nearby shortly after. This is reminiscent of the

facilitation picture inspired from facilitated kinetic Ising

models, for which mobility diffuses as a locally conserved

quantity [20,21]. However, in a real system, there should

always be a probability to create or annihilate a facilitated

chain of motion and facilitation is not fully conserved. This

is precisely what we see when avalanches start or end. As

compared to other studies of supercooled liquids, we be-

lieve that the democratic clusters [10] correspond with the

avalanches.

We shall now address how (if at all) this organization of

dynamics is reflected in the structure of the relevant con-

figuration. Here we will identify the location of ‘‘soft’’

regions by using the isoconfigurational DW factor

[14,22]. Starting from the system configuration at time t,
one computes the local DW factor for particle i: ðDWÞi ¼

h½~riðtÞ � h ~rii�t�
2i�t;C, where the average is over the isocon-

figuration ensemble as well as over a short time interval �t
which in this work is taken to be 25. Starting from the same

equilibrated configuration, we have run 6 isotrajectories

and have obtained the cage jumps for all of them.

All of the cage jumps occurring in the interval of time

½t; tþ �S� fall on top of high DW areas; see Fig. 2, top.

However, when and where the clusters exactly appear is a

stochastic event. Note that �S � 25, so that the correlation
between the DW map at time t (a nearly instantaneous

structural quantity) and the dynamics taking place at longer

times are nontrivial. The correlation between DWs and

cage jumps can be made more quantitative. We compute

the DW at time t averaged only over particles that jump

between t and tþ � (DWJ) as a function of the lag time �.
This quantity, normalized with respect to hDWðtÞit for all
particles, is shown in Fig. 2 (bottom right). At short times

the average ðDWÞJ for the jumping particles is substan-

tially higher than the DW averaged over all particles. This

correlation disappears for larger times comparable to times

over which the DWmaps decorrelate, which is of the order

of ��=3.
If we consider now the sequence of multiple clusters, as

shown in the two top panels of Fig. 2, we find strong

evidence that a significant part of the avalanche structure,

not just the initial cluster in an avalanche, lies on top of the

real-space geometric structure encoded in the soft regions.

Remarkably, merging all cage jumps that occur in the

interval of time �S in the 6 isoconfigurational trajectories

covers nearly all the high DW areas, as shown in Fig. 2

(bottom left). Our conclusion is that the spatial distribution

of soft regions encoded in the initial configuration provides

a better predictor of the avalanche than for its constitutive

clusters. This result is consistent with the previous con-

clusion of Berthier and Jack [23], who found that structural

properties are better predictors of dynamics on large as

opposed to short length scales.

We finally consider an issue never addressed before,

namely, how the dynamics causes the soft regions of the

structure to evolve. We find that decorrelation is a dis-

tinctly nonlocal process. More precisely, a cage jump at

time t correlates with changes of the DWs that happen

shortly after and extend quite far away. This is visually

apparent in Fig. 3 (left) and demonstrated quantitatively by

considering jDWðtÞ � DWðtþ �Þj averaged over all par-

ticles, that are in a disk of radius r from a cage jump taking

place at time t and subtract from that quantity its r ¼ 1
value. Figure 3 (right) shows this quantity, called�JðrÞ, for
� ¼ 17. �JðrÞ is rather long ranged, in particular, much

more than the cage jump correlation function �JðrÞ; see
Fig. 3 (right) and its caption for a precise definition of

FIG. 2 (color online). Top: Cage jumps occurring between t
and tþ �S for two different isoconfigurational trajectories, on

top of a DW factor map computed at time t. Bottom left: Cage

jumps occurring in 6 isoconfigurational trajectories between t
and tþ �S tile the high DW regions. Color bar indicates the DW

values in levels of gray. Bottom right: Average hðDWÞJi over the
particles having jumped between t and tþ �, divided by the

average hDWi over all particles, as a function of the lag time �.
Inset: PDF of ðDWÞJ for the particles jumping in ½t; tþ �� for
several values of �. The black curve is the PDF for all particles.
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�JðrÞ. What is mediating the nonlocal interaction between

cage jumps and DWs is an intriguing question. One possi-

bility is that a slowly varying spatial field, like the thermal

strain discussed in [12], provides long-ranged dynamical

interactions.

In conclusion, we have established that the organization

of cage jumps into clusters and avalanches, observed origi-

nally in the driven granular system in [6,7], also character-

izes the dynamic heterogeneities of a simulated

supercooled liquid, at least away from deep supercooling.

This demonstration of the existence of avalanches in super-

cooled liquids suggests that there is a hierarchy of lengths

related to the cooperative dynamics. The irrelevance of the

very different types of particle dynamics in the two sys-

tems possibly is a consequence of the dominant role played

by structure in the dynamics of these dense disordered

systems. The spatial extent of the avalanches is strongly

correlated with the extent of the spatial regions of large

local DW factors. This result raises the possibility that the

hierarchy of kinetic length, mentioned above, may have a

corresponding hierarchy in the inherent structures of glass-

forming liquids. The importance of the preexisting soft

modes in determining the structure of dynamic heteroge-

neities and the nonlocal influence on the evolution of the

topography of hard and soft areas leaves us with a quite

different view from the one based on the propagation of a

conserved mobility field.

Studying the evolution of dynamical properties with

decreasing temperature following the same analysis would

allow for direct tests of prominent theories of the glass

transition. In the picture based on kinetically constrained

models of glasses [21], facilitation should become more

relevant and conserved upon lowering the temperature. In

the random first order transition theory [24], the dynamics

should be correlated with soft regions for moderately

supercooled liquids, but, closer to the glass transition, the

relaxation should be dominated by other processes. Three

of us [7] have performed such an analysis for granular

media and found that facilitation becomes less conserved

as the density is increased. A similar analysis for our model

of supercooled liquids is in progress.
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J
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hj�ðDWÞiji
J
1 (blue circles) where hj�ðDWÞiji

J
r is the absolute

difference of DW over � ¼ 17 averaged over the particles in the

disk of radius r around a given cage jump. The analogous

quantity for the density of jumps �JðrÞ ¼ h�ii
J
r � h�ii

J
1 (red

squares) where �i is 1 if particle i jumps between t and tþ �
and 0 otherwise. Error bars: standard deviation.
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