Accueil  >  Séminaires  >  Understanding the mechanics of coordinated tissue movements in zebrafish gastrulation
Understanding the mechanics of coordinated tissue movements in zebrafish gastrulation
Par Silvia Grigolon (Laboratoire Jean Perrin)
Le 1 Décembre 2020 à 16h00 - Zoom

Résumé

Embryo morphogenesis relies on highly coordinated movements of different tissues as well as cell differentiation and patterning. However, remarkably little is known about how tissues coordinate their movements to shape the embryo and whether and how dynamic changes in signalling and tissue rheology affect tissue morphogenesis. In zebrafish embryogenesis, coordinated tissue movements first become apparent during "doming," when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and deep cell intercalations. In this talk, I will first present how using a combination of active-gel theory and experiments (performed by Dr. Hitoshi Morita, Yamanashi University, Japan) shows that active surface cell expansion represents the key process coordinating tissue movements during doming. I will then talk about the analysis of the intrinsic mechanical properties of the blastoderm at the onset of doming and how, by the aid of a simpler toy model and experiments (performed by Dr. Nicoletta Petridou, IST Austria), blastoderm movement relies on a rapid, pronounced and spatially patterned tissue fluidisation which is found to be linked to local activation of non-canonical Wnt signalling mediating cell cohesion.